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Preface

This is the fourth installment in the Discrete Applied Mathematics series on com-
putational molecular biology, which is devoted to combinatorial and algorithmic tech-
niques in computational molecular biology. This series publishes novel research results
on the mathematical and algorithmic foundations of the inherently discrete aspects of
computational biology. The previous volumes in the series were Volume 71, issue 1-3,
December 1996, Volume 88, issues 1-3, November 1998, and Volume 104, issues 1-3,
August 2000.

The current issue contains papers demonstrating the variety and richness of compu-
tational problems motivated by molecular biology. The application areas within biology
that give rise to the problems studied in these papers include solid molecular modeling,
sequence comparison, phylogeny, evolution, mapping, DNA chips, protein folding and
2D gel technology. The mathematical techniques used are algorithmics, combinatorics,
optimization, probability, graph theory, complexity and applied mathematics. Below is
a brief description of each paper.

In “Dynamic maintenance and visualization of molecular surfaces”, Bajaj, Pascucci,
Shamir, Holt and Netravali study the problems of computing and updating the boundary
representation of a molecular surface. Using non-uniform rational B-splines, they show
how to efficiently compute the representation and how to gain speed in dynamic updates
at the expense of accuracy.

Veeramachaneni, Berman and Miller, in their paper “Aligning two fragmented se-
quences”, study the problem of sequence comparison when each of the sequences is
fragmented into several contigs whose order and orientation are unknown. This problem
arises in analysis of “unfinished” DNA sequences. They show that optimal alignment
is hard in this context, but provide a polynomial approximation algorithm.

In “Algorithm for statistical alignment of two sequences derived from a Poisson
sequence length distribution”, Miklos provides an algorithm for computing the joint
probability of two sequences evolved in a non-reversible way from a Poisson sequence
length distribution.

Multiple sequence alignment is one of the fundamental challenges in computational
biology. In “Weighted sequence graphs: Boosting iterated dynamic programming using
locally suboptimal solutions”, Schwikowski and Vingron contribute to this field by de-
veloping a framework for iterated dynamic programming and applying to it benchmark
alignment problems.

Sequencing by hybridization and universal DNA chips have ignited the imagina-
tion of theorists for over a decade, and have been a source of combinatorial and

0166-218X/03/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0166-218X(02)00281-0
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algorithmic problems. In “Recognizing DNA graphs is difficult”, Pendavingh, Schuur-
man and Woeginger study the complexity of graphs motivated by SBH. In particular,
they show that recognizing DNA graphs is NP-hard.

Denis and Gascuel, in “On the consistency of the minimum evolution principle
of phylogenetic inference”, study a fundamental statistical question in phylogeny. To
address the minimum evolution problem, they use a model that combines properties
of ordinary and weighted least squares criteria and show that the minimum evolution
principle is statistically consistent within this model.

In “Point matching under non-uniform distortions”, Akutsu, Kanaya, Ohyama and
Fujiyama address a pattern matching problem that is related to two dimensional gel
images analysis. They show that the problem is NP-hard in general, but provide an
efficient solution for a special case and a practical heuristic.

In “Point placement on the line by distance data™, Damaschke studies a problem
motivated by DNA mapping. The question is how to determine the placement of points
on the line based on adaptive queries on their pairwise distances. The author proves
upper and lower bounds on the number of necessary queries. He also provides an
algorithm for generating all linear layouts given all pairwise distances of edges of a
chordal graph.

Two papers deal with protein folding problems on lattices. In “The algorithmics of
folding proteins on lattices”, Chandru, Datta Sharma and Anil Kumar survey the recent
developments in the analysis of the problem, detailing both hardness and approximation
results. In “Approximate protein folding in the HP side chain model on extended cubic
lattices”, Heun studies the problem on a cubic lattice which is extended by diagonals
in the plane. He provides two polynomial approximation algorithms that guarantee
approximation ratios of 59/70 and 37/42, respectively.

The vision of the “marriage” between mathematics and biology, which was also
behind the idea of starting this series more than six years ago, is becoming a reality.
In the “post-genome era” it is almost unthinkable that the biology of the future can be
done without using computers for data handling and for sophisticated analysis. Biology
continues to be a wonderful source of computational problems and challenges to the
theorist and the practitioner in computer science and mathematics. In return, the theory
developed on those problems leads to practical tools that advance the biological and
medical research.
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Abstract

This paper discusses the pattern matching problem for points under non-uniform distortions,
which arises from the analysis of two-dimensional (2-D) electrophoresis images. First, we provide
a formal definition of the problem. Next, we prove that it is NP-hard in two (or more) dimensions.
This proof is based on a reduction from planar 3SAT. Then we present a simple polynomial time
algorithm for a special and one-dimensional case of the problem, which is based on dynamic
programming. We also present a practical heuristic algorithm for identifying a match between two
sets of spots in 2-D gel electrophoresis images obtained from genomic DNA. © 2002 Elsevier
Science B.V. All rights reserved.

Keywords: Point matching; Geometric matching; Electrophoresis; NP-hard

1. Introduction

Matching of spatial point sets (i.e., comparing two sets of points) is a fundamental
pattern matching problem. Thus many studies have been conducted in computational
geometry [1,3,7,8] and pattern recognition [4,12].

Most of theoretical studies have focused on point matching under uniform transfor-
mations (e.g., translations, rigid motions and/or scalings) [1,3,7,8]. However, in some

Partially supported by a Grant-in-Aid “Genome Science™ and a Grant-in-Aid No. 10780171 from The
Ministry of Education, Science, Sports and Culture in Japan.
* Corresponding author.
E-mail addresses: takutsu@ims.u-tokyo.ac.jp (Tatsuya Akutsu), kanaya@hydra.mki.co.jp (Kyotetsu
Kanaya), akr@hydra.mki.co.jp (Akira Ohyama), afujiyam@lab.nig.ac.jp (Asao Fujiyama).
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applications, non-uniform distortions may occur and thus pattern matching based on
local similarity is important. Pattern matching of spots obtained by the two-dimensional
(2-D) gel electrophoresis technique is an important example of such applications
[2,6,13]. We have developed a system called DDGEL [9] for the analysis of 2-D
gel electrophoresis images obtained from genomic DNA by means of the restriction
landmark genomic scanning (RLGS) method [5]. Previous point matching methods
are not directly applicable to this application because the positions of spots are dis-
torted non-uniformly. Due to the recent progress in proteomics, analysis of 2-D gel
electrophoresis images of proteins is an important issue. Therefore, a technique for
matching of spots under non-uniform distortions is required [2,6].

On the other hand, in the field of pattern recognition, many heuristic algorithms
have been developed for pattern matching under non-uniform distortions [2,4,6,12,13].
Appel et al., considered transformations based on second- and third-order polynomials
to contend with non-uniform distortions appearing in electrophoresis image data [2].
However, their method (and many of other methods for electrophoresis image analysis)
uses so-called landmarks in order to identify polynomials, where landmarks are spot
pairs intensively marked in both images by the user and selected as putative matching
pairs.

Several groups applied Delaunay graphs (Delaunay triangulations) and/or relative
neighborhood graphs to the problem of point matching under non-uniform distortions
[4,6,12,13]. In these methods, a Delaunay graph (or a relative neighborhood graph) is
first computed from each set of points. A maximum common subgraph (or a similar
structure) between two graphs is then computed. However, finding a maximum common
subgraph is a time consuming process (it is NP-hard in general). Therefore, various
heuristics were employed in the Delaunay-based approaches. It is reasonable to question
whether or not such a time consuming procedure is essential for point matching under
non-uniform distortions. This is the theoretical motivation behind our study.

This paper consists of two parts: a theoretical part and a practical part. In the the-
oretical part, we propose a simple definition for point matching under non-uniform
distortions, where similar formalizations are given in [6,12]. We prove that the prob-
lem is NP-hard in two or more dimensions. This result answers the above question:
time consuming search procedures such as finding a maximum common subgraph are
essential for point matching under non-uniform distortions unless P =NP. On the other
hand, we present a simple polynomial time algorithm for a special and one-dimensional
case, which is similar to the well-known dynamic programming algorithms for approxi-
mate string matching and sequence alignment. In the practical part, we show a heuristic
method for spot matching of 2-D electrophoresis gel images obtained from genomic
DNA by means of the RLGS method [5]. Although this method is heuristic, it uses
a variant of the dynamic programming algorithm mentioned above. The method is
implemented in the DDGEL system and is tested using real gel image data.

The hardness result is interesting from a theoretical viewpoint because almost no
NP-hardness results have been presented in the field of approximate point matching.
The only exception was proposed by Iwanowski [8], who studied the problem of ap-
proximate symmetry detection in the plane and proved that it is NP-hard. It is inter-
esting that reductions from the same problem (PLANAR 3SAT) were used both in this
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paper and Iwanowski’s paper. However, the reduction used in this paper is substan-
tially different from that used by Iwanowski. Indeed, Iwanowski considered approximate
symmetry under uniform distortions.

2. Definition of the problem

In this section, we propose a formal definition for point matching under non-uniform
distortions. Although other appropriate definitions may have been suggested, this defi-
nition is simple and reasonable.

Let P={pi,.... pn}and O={q...., ¢, } be point sets in d-dimensions, respectively.
We call a set of pairs M = {(pi.4;).....(Pi.q;,)} a match if (Yh#k)(p;, #p; and
4 76 9 )-

Definition 1 (Point matching under non-uniform distortions). Point matching under
non-uniform distortions is, given a positive real & two point sets P = {pi,....pu}
and Q = {qi,...,q,} in d-dimensional Euclidean space, to find a maximum match
M ={pi, q;,)s---» (Pi;-q;,)} (i.e.., a match M with the maximum cardinality) satisfying

(Vk)(V/z#k)( L 19— 4al <1+a>,
l+e  |pi —pil

where |p — ¢| denotes the Euclidean distance between p and g.

It should be noted that P and Q can be interchanged because 1/(1+¢) <x/y < 1+¢
if and only if 1/(1 +¢) < y/x <1+ ¢ This definition requires that local similarities
between P and Q are preserved because the error for two point pairs must be small if
the distances between points in the pairs are small.

In the above definition, global similarities are also taken into account to some extent.
Of course, the problem might be defined such that only local similarities can be taken
into account. However, in such a case, some threshold would be required to discriminate
between local and global distances and thus the definition would be complex and less
reasonable.

Here we show the difference between the proposed definition and e-approximate con-
gruence [1], where the latter is a typical point matching problem under uniform distor-
tions and has been well studied in computational geometry. Recall that, in e-approximate
congruence, p; matches ¢, if and only if |g; — p; | < ¢, where an adequate isometric
transformation can be applied to P before computing the match.

In Fig. 1, P consists of four squares, each of which is of size 1x1. Consider the case
of £¢=0.5 in ¢-approximate congruence. Then, P matches Q; (i.e., there is a match M
such that M| = 16), but does not match 0>. On the other hand, in the case of ¢=0.5
in point matching under non-uniform distortions, P does not match Q) but matches
(O,. This example shows that local similarities are taken into account more in point
matching under non-uniform distortions than in e-approximate congruence.
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Fig. 1. This figure shows the difference between point matching under non-uniform distortions and point
matching under uniform distortions. P matches Q| but does not match Q> under uniform distortions. whereas
P does not match Q) but matches 0> under non-uniform distortions.

3. NP-hardness result for two-dimensional case

In Section 2, we proposed a definition for point matching under non-uniform distor-
tions. However, this problem is NP-hard even for two-dimensions.

Theorem 2. Point matching under non-uniform distortions in d-dimensions is
NP-hard for any fixed number ¢ such that 0 <& < 044 and for any fixed integer
d>2.

Proof. We use a polynomial time reduction from PLANAR 3SAT [11]. Let C =
{c1,¢2,...,cy} be an instance of PLANAR 3SAT over the set of variables V =
{vi,v2,..., ¢}, where we assume that each clause ¢; consists of 3 literals. Note that
in PLANAR 3SAT, the graph G(¥V U C,E) must be planar, where E = {{v;,c;}|v; € ¢;
or ;€c;} U {{vi,v;1}} U {{vi,vx}}. Moreover, we assume that a grid embedding
of G(V UC,E) is already obtained as shown in Fig. 2. A grid embedding of size
O(N) x O(N) can be computed in linear time from G(V U C,E) [10].

From the grid embedding of an instance of PLANAR 3SAT, we construct an instance
(P, Q,¢) of the point matching problem. The instance is constructed such that the fol-
lowing holds: there exists a maximum match M satisfying |M|=|P| if and only if there
exists a truth assignment satisfying all clauses. The construction will be formed from
several components, which can be partitioned into three parts and grouped according
to their intended function: truth-setting components, satisfaction-testing components,
and routing components.

First, we will discuss the satisfaction-testing components (see also Fig. 3) since
these form the core of the construction. For each clause ¢;, we construct a set of
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Fig. 2. Example of grid embedding of a planar graph for a 3SAT instance {{a.b,c},{¢,d,é},{b,¢,e}}.
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Fig. 3. Satisfaction-testing component.
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i <\/§(1 ~w)l  (1-a)l

Iy _
> 5 ) g =(0.(1+a)L),

[ V3U+wL (1+a)L sr (V30 +aL  (1+a)L
g9 =\ - D T » 4 = 2 T o »
and each T7; is to be translated to an appropriate position. L is any positive constant
(for example, we can use L =1).

Here we let e=20. We can now see that the following relations hold for any a such
that 0 < o < 0.22:

- . 1 " .
V) (g =g/l = +2)L), (V) ((m)“""’ —:dl<(1+a)L),

1 L
(V) (Vk#J) ((m)“ g — 4t <(1+e)L).

1 -
(Vi) (Vk#J) ((m)qu{" — g <(1+s)L).

It should be noted that (1/(1 +¢))L < ]q{" — ¢¥| (k#) does not hold if & > 0.23.

Because of the above relationships, the following must hold in order to satisfy [M|=
|P]:

(a) if (p?.q/) €M, then (p.q/") €M, (p}.q¥) €M or (pl.q;" ) €M, and, (b}, 4} ) €M
or (pl.q;")EM,

(b) if (p).q?) €M, then (p?.g*) €M, (p!.q)") EM or (p|.q;" ) €M, and, (p}.g") €M
or (p.q;/ )M,

(c) if (pl.q}) €M, then (p},¢") €M, (p|.q!") EM or (pl.q;") €M and, (p}.q}") €M
or (pLq; ) eM.

From this, we can see that at least one of (p!,q}") e M, (p?,q*) €M and (p},q}") e M
must hold in order to satisfy |M|=|P|. Here we assume ¢; ={v;,v2,03}. Then, case (a)
corresponds to the case where v; is satisfied, case (b) corresponds to the case where
vy is satisfied, and case (c) corresponds to the case where v; is satisfied. Thus, at least
one of (p),q)")EM, (p}.q?') €M and (p},¢") € M must hold in order to satisfy clause
Ci.

Next we will discuss the truth-setting components. For each variable v;, we construct
a truth-setting component (see Fig. 4). Let (x;,0) be the position for variable v; in the
grid embedding of G(¥ U C,E). We construct the point sets P;, Q! and Q',-’ by

oo { (5.2 (5-2)]
o{ (53 +s0) (m=5F o) s=1.}.
0 ={(xi = D,0)} U {(—*f —Dg) ‘ ("" ‘D*‘g)}
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Fig. 4. Truth-setting component.

U{(.X,‘—D,g-FjD),(x,‘—D,—g —]D)‘j:h},
D D
Q;/ :{(xi-f-D,O)}U {<Xi+Dn'5) .(xi-f-D,-—E)}
@] {<X1+D.§+jD>,<x,‘+D,—§ —_]D)'_]Zl,},

where D = aL.

For these point sets, the following property holds for any ¢ such that 0 < ¢ < 0.44:
either P; matches Q! or P; matches Q; under the condition that every point in P;
matches a point in Q. These point sets are constructed such that “P; matches Q!”
corresponds to “v;=true” and “P; matches Qf ” corresponds to “v;=false”.

Next we will discuss the routing components. According to the grid embedding
of G(V UC,E), the truth-setting components are connected to the satisfaction-testing
components. In order to do this, the following types of gadgets are used:

(1) copying a truth assignment,
(i) inverting a truth assignment on v; (i.e., creating v;),
(iii) connecting a truth assignment to a satisfaction-testing component.
Gadgets of type (i) are constructed in the following way. Each gadget has the form

shown in Fig. 5 and consists of three point sets: P, Q” and Q’ In Fig. 5, Q” consists

of the points on the bold lines, QAJ consists of the points on the dashed bold lines and
P consists of the points on the thin lines. Explicit coordinates of the points are given



