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Foreword

When intellectual and political movements ponder their roots, no event looms
larger than the first congress. The first meeting on fractals was held in July
1982 in Courchevel, in the French Alps, through the initiative of Herbert Budd
and with the support of IBM Europe Institute. Jean-Frangois Gouyet’s book
reminds me of Courchevel, because it was there that I made the acquaintance
and sealed the friendship of one of the participants, Bernard Sapoval, and it
was from there that the fractal bug was taken to Ecole Polytechnique. Sapoval,
Gouyet and Michel Rosso soon undertook the work that made their laboratory
an internationally recognized center for fractal research. If I am recounting all
this, it is to underline that Gouyet is not merely the author of a new textbook,
but an active player on a world-famous stage. While the tone is straightfor-
ward, as befits a textbook, he speaks with authority and deserves to be heard.

The topic of fractal diffusion fronts which brought great renown to
Gouyet and his colleagues at Polytechnique is hard to classify, so numerous
and varied are the fields to which it applies. I find this feature to be particularly
attractive. The discovery of fractal diffusion fronts can indeed be said to
concern the theory of welding, where it found its original motivation. But it
can also be said to concern the physics of (poorly) condensed matter. Finally it
also concerns one of the most fundamental concepts of mathematics, namely,
diffusion. Ever since the time of Fourier and then of Bachelier (1900) and
Wiener (1922), the study of diffusion keeps moving forward, yet entirely new
questions come about rarely. Diffusion fronts brought in something entirely
new.

Returning to the book itself, if the variety of the topics comes as a surprise
to the reader, and if the brevity of some of treatments leaves him or her hungry
for more, then the author will have achieved the goal he set himself. The most
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important specialized texts treating the subject are carefully referenced and
should satisfy most needs.

To sum up, I congratulate Jean-Frangois warmly and wish his book the
great success it deserves.

Benoit B. MANDELBROT

Yale University
IBM T.J. Watson Research Center



So, Nat’ralists observe, a Flea

Hath smaller Fleas that on him prey,
And these have smaller yet to bite ‘em
And so proceed ad infinitum.

Jonathan Swift, 1733,
On poetry, a Rhapsody.




Preface

The introduction of the concept of fractals by Benoit B. Mandelbrot at the
beginning of the 1970’s represented a major revolution in various areas of
physics. The problems posed by phenomena involving fractal structures may
be very difficult, but the formulation and geometric understanding of these
objects has been simplified considerably. This no doubt explains the immense
success of this concept in dealing with all phenomena in which a semblance of
disorder appears.

Fractal structures were discovered by mathematicians over a century ago
and have been used as subtle examples of continuous but nonrectifiable curves,
that is, those whose length cannot be measured, or of continuous but nowhere
differentiable curves, that is, those for which it is impossible to draw a tangent
at any their points. Benoit Mandelbrot was the first to realize that many shapes
in nature exhibit a fractal structure, from clouds, trees, mountains, certain
plants, rivers and coastlines to the distribution of the craters on the moon. The
existence of such structures in nature stems from the presence of disorder, or
results from a functional optimization. Indeed, this is how trees and lungs
maximise their surface/volume ratios.

This volume, which derives from a course given for the last three years at
the Ecole Supérieure d’Electricité, should be seen as an introduction to the
numerous phenomena giving rise to fractal structures. It is intended for
students and for all those wishing to initiate themselves into this fascinating
field where apparently disordered forms become geometry. It should also be
useful to researchers, physicists, and chemists, who are not yet experts in this
field.

This book does not claim to be an exhaustive study of all the latest
research in the field, yet it does contains all the material necessary to allow the
reader to tackle it. Deeper studies may be found not only in Mandelbrot’s
books (Springer Verlag will publish a selection of books which bring together
reprints of published articles along with many unpublished papers), but also in
the very abundant, specialized existing literature, the principal references of
which are located at the end of this book.

The initial chapter introduces the principal mathematical concepts needed
to characterize fractal structures. The next two chapters are given over to fractal
geometries found in nature; the division of these two chapters is intended to
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help the presentation. Chapter 2 concerns those structures which may extend to
enormous sizes (galaxies, mountainous reliefs, etc.), while Chap. 3 explains
those fractal structures studied by materials physicists. This classification is
obviously too rigid; for example, fractures generate similar structures ranging
in size from several microns to several hundreds of meters.

In these two chapters devoted to fractal geometries produced by the
physical world, we have introduced some very general models. Thus fractional
Brownian motion is introduced to deal with reliefs, and percolation to deal with
disordered media. This approach, which may seem slightly unorthodox seeing
that these concepts have a much wider range of application than the examples
to which they are attached, is intended to lighten the mathematical part of the
subject by integrating it into a physical context.

Chapter 4 concerns growth models. These display too great a diversity
and richness to be dispersed in the course of the treatment of the various
phenomena described.

Finally, Chap. 5 introduces the dynamic aspects of transport in fractal
media. Thus it completes the geometric aspects of dynamic phenomena
described in the previous chapters.

I would like to thank my colleagues Pierre Collet, Eric Courtens,
Francois Devreux, Marie Farge, Max Kolb, Roland Lenormand, Jean-Marc
Luck, Laurent Malier, Jacques Peyriere, Bernard Sapoval, and Richard
Schaeffer, for the many discussions which we have had during the writing of
this book. I thank Benoit Mandelbrot for the many improvements he has
suggested throughout this book and for agreeing to write the preface. I am
especially grateful to Etienne Guyon, Jean-Pierre Hulin, Pierre Moussa, and
Michel Rosso for all the remarks and suggestions that they have made to me
and for the time they have spent in checking my manuscript. Finally, I would
like to thank Marc Donnart and Suzanne Gouyet for their invaluable assistance
during the preparation of the final version.

The success of the French original version published by Masson, has
motivated Masson and Springer to publish the present English translation. I am
greatly indebted to them. I acknowledge Dr. David Corfield who carried out
this translation and Dr. Clarissa Javanaud and Prof. Eugene Stanley for many
valuable remarks upon the final translation. During the last four years, the use
of fractals has widely spread in various fields of science and technology, and
some new approaches (such as wavelets transform) or concepts (such as scale
relativity) have appeared. But the essential of fractal knowledge was already
present at the end of the 1980s.

Palaiseau, July 1995
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CHAPTER 1

Fractal Geometries

1.1 Introduction

The end of the 1970s saw the idea of fractal geometry spread into numerous
areas of physics. Indeed, the concept of fractal geometry, introduced by B.
Mandelbrot, provides a solid framework for the analysis of natural phenomena
in various scientific domains. As Roger Pynn wrote in Nature, “If this opinion
continues to spread, we won’t have to wait long before the study of fractals
becomes an obligatory part of the university curriculum.”

The fractal concept brings many earlier mathematical studies within a
single framework. The objects concerned were invented at the end of the 19th
century by such mathematicians as Cantor, Peano, etc. The term “fractal” was
introduced by B. Mandelbrot (fractal, i.e., that which has been infinitely
divided, from the Latin “fractus,” derived from the verb “frangere,” to break).
It is difficult to give a precise yet general definition of a fractal object; we shall
define it, following Mandelbrot, as a set which shows irregularities on all
scales.

Fundamentally it is its geometric character which gives it such great scope;
fractal geometry forms the missing complement to Euclidean geometry and
crystalline symmetry.! As Mandelbrot has remarked, clouds are not spheres,
nor mountains cones, nor islands circles and their description requires a
different geometrization.

As we shall show, the idea of fractal geometry is closely linked to
properties invariant under change of scale: a fractal structure is the same “from
near or from far.” The concepts of self-similarity and scale invariance appeared
independently in several fields; among these, in particular, are critical
phenomena and second order phase transitions.2 We also find fractal
geometries in particle trajectories, hydrodynamic lines of flux, waves,
landscapes, mountains, islands and rivers, rocks, metals, and composite
materials, plants, polymers, and gels, etc.

1 We must, however, add here the recent discoveries about quasicrystalline symmetries.
2 We shall not refer here to the wide and fundamental literature on critical phenomena,
renormalization, etc.
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Many works on the subject have been published in the last 10 years. Basic
works are less numerous: besides his articles, B. Mandelbrot has published
general books about his work (Mandelbrot, 1975, 1977, and 1982); the books
by Barnsley (1988) and Falconer (1990) both approach the mathematical
aspects of the subject. Among the books treating fractals within the domain of
the physical sciences are those by Feder (1988) and Vicsek (1989) (which
particularly concentrates on growth phenomena), Takayasu (1990), or Le
Méhauté (1990), as well as a certain number of more specialized (Avnir, 1989;
Bunde and Havlin, 1991) or introductory monographs on fractals (Sapoval,
1990). More specialized reviews will be mentioned in the appropriate chapters.

1.2 The notion of dimension
A common method of measuring a length, a surface area or a volume
consists in covering them with boxes whose length, surface area or volume is

taken as the unit of measurement (Fig. 1.2.1). This is the principle which lies
behind the use of multiple integration in calculating these quantities.

oA

=0 d= l d=2 d=3

Fig. 1.2.1. Paving with lines, surfaces, or volumes.

If € is the side (standard length) of a box and d its Euclidean dimension, the
measurement obtained is

M=N ed =N,

where |L is the unit of measurement (length, surface area, or volume in the
present case, mass in other cases). Cantor, Carathéodory, Peano, etc.
showed that there exist pathological objects for which this method fails. The
measurement above must then be replaced, for example, by the o-
dimensional Hausdorff measure. This is what we shall now explain.

The length of the Brittany’s coastline

Imagine that we would like to apply the preceding method to measure the
length, between two fixed points, of a very jagged coastline such as that of
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Brittany.? We soon notice that we are faced with a difficulty: the length £
depends on the chosen unit of measurement € and increases indefinitely as €
decreases (Fig. 1.2.2)!

Fig. 1.2.2. Measuring the length of a coastline in relation to different units.

For a standard unit €; we get a length N; €, but a smaller standard
measure, €,, gives a new value which is larger,

L(Sl) = Nl E]
L(Sz) = N2 82¢ L(El)

and this occurs on scales going from several tens of kilometers down to a few
meters. L.F. Richardson, in 1961, studied the variations in the approximate
length of various coastlines and noticed that, very generally speaking, over a

=) Coagt of Australia
\\O\

- Circle - o‘:\
1

LCoast of SOlllth Africa L_

4.0

—

is Land border of Germe!ny

\M\g_

St coggy
of England
3.0 - .
) Land border of Portugal T

1.0 1.5 2.0 2.5 3.0 3.5
Log (Length of the unit measure in kilometres)

Log (Total length in kilometres)

Fig. 1.2.3 Measurements of the lengths of various coastlines and land borders carried
out by Richardson (1961)

3 See the interesting preface of J. Perrin (1913) in Atoms, Constable (London).
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large range of L (€), the length follows a power law* in €,
L(E)=N(g)e o< &P,

Figure 1.2.3 shows the behavior of various coastlines as functions of the
unit of measurement. We can see that for a “normal” curve like the circle, the
length remains constant (p = 0) when the unit of measurement becomes small
enough in relation to the radius of curvature. The dimension of the circle is of
course D = 1 (and corresponds to p = 0). The other curves display a positive
exponent p so that their length grows indefinitely as the standard length
decreases: it is impossible to give them a precise length, they are said to be
nonrectifiable.> Moreover, these curves also prove to be nondifferentiable.

The exponent (1+p) of 1/N(e) defined above is in fact the “fractal
dimension” as we shall see below. This method of determining the fractal size
by covering the coast line with discs of radius € is precisely the one used by
Pontrjagin and Schnirelman (1932) (Mandelbrot, 1982, p. 439) to define the
covering dimension. The idea of defining the dimension on the basis of a
covering ribbon of width 2¢ had already been developed by Minkowski in
1901. We shall therefore now examine these methods in greater detail.

Generally speaking, studies carried out on fractal structures rely both on
those concerning nondifferentiable functions (Cantor, Poincaré, and Julia) and
on those relating to the measure (dimension) of a closed set (Bouligand,
Hausdorff, and Besicovitch).

1.3 Metric properties: Hausdorff dimension,
topological dimension

Several definitions of fractal dimension have been proposed. These
mathematical definitions are sometimes rather formal and initially not always
very meaningful to the physicist. For a given fractal structure they usually give
the same value for the fractal dimension, but this is not always the case. With
some of these definitions, however, the calculations may prove easier or more
precise than with others, or better suited to characterize a physical property.

Before giving details of the various categories of fractal structures, we
shall give some mathematical definitions and various methods for calculating
dimensions; for more details refer to Tricot’s work (Tricot, 1988), or to
Falconer’s books (Falconer, 1985, 1990).

First, we remark that to define the dimension of a structure, this structure
must have a notion of distance (denoted Ix-yl) defined on it between any two
of its points. This hardly poses a problem for the structures provided by
nature.

4 The commonly used notation ‘e<’ means ‘varies as’: a o< b means precisely that the ratio a/b
asymptotically tends towards a nonzero constant.

5 A part of a curve is rectifiable if its length can be determined.
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We should also mention that in these definitions there is always a passage
to the limit €~0. For the actual calculation of a fractal dimension we are led to
discretize (i.e., to use finite basic lengths €): the accuracy of the calculation
then depends on the relative lengths of the unit €, and that of the system (Sec.
1.4.4).

1.3.1 The topological dimension dp

If we are dealing with a geometric object composed of a set of points, we
say that its fractal dimension is dy = 0; if it is composed of line elements, dt =
1, surface elements dr =2, etc.

“Composed” means here that the object is locally homeomorphic to a point, a
line, a surface. The topological dimension is invariant under invertible, continuous,
but not necessarily differentiable, transformations (homeomorphisms). The
dimensions which we shall be speaking of are invariant under differentiable
transformations (dilations).

A fractal structure possesses a fractal dimension strictly greater than its
topological dimension.

1.3.2 The Hausdorff-Besicovitch dimension,
or covering dimension: dim(E)

The first approach to finding the dimension of an object, E, follows the
usual method of covering the object with boxes (belonging to the space in
which the object is embedded) whose measurement unit i = €4®), where d(E)
is the Euclidean dimension of the object. When d(E) is initially unknown, one
possible solution takes | = €% as the unit of measurement for an unknown
exponent o. Let us consider, for example, a square (d = 2) of side L, and
cover it with boxes of side €. The measure is given by M = N, where N is
the number of boxes, hence N = (L/e)d. Thus,

M=Ne®*=(L/g)de* =12 g2

If we try o0 = 1, we find that M — o when € — 0: the “length” of a
square is infinite. If we try oo = 3, we find that 4 — 0 when € — 0: the
“volume” of a square is zero. The surface area of a square is obtained only
when o, = 2, and its dimension is the same as that of a surface d = o0 = 2.

The fact that this method can be applied for any real o is very interesting
as it makes possible its generalization to noninteger dimensions.

We can formalize this measure a little more. First, as the object has no
specific shape, it is not possible, in general, to cover it with identical boxes of
side €. But the object E may be covered with balls V; whose diameter (diam V;)
is less than or equal to €. This offers more flexibility, but requires that the



