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Preface

This volume consists of a collection of articles for the proceedings of
the 40th Taniguchi Symposium Analysis and Geometry in Several Complex
Variables held in Katata, Japan, on June 23-28, 1997.

Since the inhomogeneous Cauchy-Riemann equation was introduced in
the study of Complex Analysis of Several Variables, there has been strong
interaction between Complex Analysis and Real Analysis, in particular,
the theory of Partial Differential Equations. Problems in Complex Anal-
ysis stimulate the development of the PDE theory which subsequently
can be applied to Complex Analysis. This interaction involves Differen-
tial Geometry, for instance, via the CR structure modeled on the induced
structure on the boundary of a complex manifold. Such structures are
naturally related to the PDE theory. Differential Geometric formalisms
are efficiently used in settling problems in Complex Analysis and the
results enrich the theory of Differential Geometry.

This volume focuses on the most recent developments in this inter-
action, including links with other fields such as Algebraic Geometry and
Theoretical Physics. Written by participants in the Symposium, this vol-
ume treats various aspects of CR geometry and the Bergman kernel/ pro-
Jection, together with other major subjects in modern Complex Analysis.
We hope that this volume will serve as a resource for all who are interested
in the new trends in this area.

We would like to express our gratitude to the Taniguchi Foundation
for generous financial support and hospitality. We would also like to thank
Professor Kiyosi Ito who coordinated the organization of the symposium.
Finally, we greatly appreciate all the efforts of the referees.

Gen Komatsu
Masatake Kuranishi
Editors
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CHAPTER 1

The Bergman Kernel and a Theorem of Tian

David Catlin

Introduction

Given a domain € in C*, the Bergman kernel is the kernel of the
projection operator from L?(Q2) to the Hardy space .A%(2). When the
boundary of Q is strictly pseudoconvex and smooth, Fefferman [2] gave a
complete description of the asymptotic behavior of K (2, z) as z approaches
the boundary. This work was then extended by Boutet de Monvel and
Sjéstrand [1] who showed that, for the same domains, a similar asymptotic
expansion for K (z,w) holds off the diagonal. Moreover, they showed that
the Bergman kernel is a Fourier integral operator with a complex phase
function. The first goal of this paper is to prove the following theorem:

Theorem 1. Suppose E is a holomorphic vector bundle defined over a
smoothly bounded strictly pseudoconver manifold Q = {z; R(z) < 1}, and
suppose that the L?-norm is defined in terms of both a smooth Hermi-
tian metric on E and a smooth metric g on the base manifold 2. Then
the Bergman kernel K(z,w) of the projection onto A*(Q, E) is a Fourier
integral operator and can be represented by

F(z,w)
(1 — R(z,w))"+!

K(z,w) = + G(z,w)log(1 — R(z,w)). (0.1)

As in [1] and [2], the function R(z,w) is almost analytic along the
boundary diagonal. The coefficients F' and G are smooth sections of the
vector bundle whose fiber at (z,w) is Hom(E,, E,).

Theorem 1 is hardly a surprising result. It seems certain that the proof
of Boutet de Monvel and Sjéstrand would carry over to the situation of
Theorem 1 with few changes. The proof given here assumes the theorem
of Boutet de Monvel-Sjostrand and also makes use of a few simple facts
about Fourier integral operators.
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Secondly, we use the result of Theorem 1 to study the asymptotic
behavior of a family of finite-dimensional Bergman kernels on circular
domains. Let E and L be holomorphic vector bundles of rank p and 1,
respectively, over a complex manifold M, and let R be a smooth Hermitian
metric on L. We assume that R has been extended onto a smooth function
L x L that is almost-analytic along the diagonal, linear in the first entry
and anti-linear in the second.

WeletQ-{{EL R(€,€) < 1}, and then, usmg7r:Q—»M we
define £ = 7*E and also a metric G = 7*G on E. Thus we obtain an
L?-norm by setting ||®]|2 = 3| ®|?vols, where g is a suitably chosen metric

Q

on T.

Let A4(Q, E’) denote the space of holomorphic section of E on {2 that
are homogeneous of order d on each fiber L,, and let K (&,6), having
values in Hom (Ey, E¢), denote the kernel of the projection

(Paf) (€ ZKd £,8) f(0)vol;(8) (0.2)

of L2(Q, E) onto A4(Q, E).

Theorem 2. Suppose that the curvature of R is negative on M. Then
for all € = 0,1,..., there exist smooth sections ae(&,6) having values in
Hom(Eg, Eg) and constant along fibers of L such that

Kd e RdZdn+1_eaz, (03)

£=0

where (0.3) means that for any integers g, N > 0,

Moreover, at any point £ € b2, ag satisfies

< My dv+ov. (0.4)
C9

N
Ky — R4 Z dn+1—£ae

€=0

a(6,6) = - (z) - Ml T ©03)

where A1(2), ... ,An(2) are the eigenvalues of the curvature form of R at
z =m(&).
We note that the negativity of the curvature of R means that  is

strictly pseudoconvex. The fact that Q is invariant under the map £ — ¢
means that A4%(Q, E ) is the orthogonal sum of the finite-dimensional spaces
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Aa(9, E) Using the kernel formula from Theorem 1 for the projection
onto A*(Q, E), we show that when K is written as a Taylor series in the
fiber variable ¢, the only terms that act on A4(f, E) are the terms of order

¢?. This leads to (0.3).

It is well-known that each section ¢ € L%(M, E® L*%) can be identified
with a section I(p) € L3(, E’), which is defined to be the set of sections
in L%(Q, E’) that are homogeneous of order d on each fiber L,. Given G, R,
and g, there is a naturally defined L?>-norm || ||ggz-s on L*(M, E® L*?).
If € L2(Q, E), we obtain a norm ||@||? = 117(®) || pgr+¢ Which turns out
to be a slight perturbation of the usual E-norm. We let K M4 denote the
kernel of the projection Py;4 of Li(Q, E) onto A4(1, E) with respect to
this new norm. Thus Py is just the projection onto H'(M, E ® L*?),
transferred over to Q.

Theorem 3. Under the assumptions of Theorem 2, the kernel K Md of

Py 4 satisfies
2T

Kprg~ K,. .6
Ma~ 7 Kq (0.6)
Hence Kprq has an asymptotic expansion of the form
KM,d ~ R4 Z Agdn—g, (07)
=0

where A, is constant along fibers and where

Ao(2,2) = [M(2) ... Aa(2)] Id. (0.8)

Corollary. Let ¢1...,¢pn be an orthonormal basis of HO(M, E ® L*d)
N

and define B(z) = Z lok(2)|hgrea- Then

k=0

B(2) ~ Y trAy2)d™ . (0.9)
=0

In the case when E = L*, the above result and its corollary and also
Theorem 4 which follow were obtained independently by Zelditch [5] and
the author. The asymptotic description of K4 in [5] is based on the
study of the Szego kernel of the disk bundle €.
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For the final result of this paper, we use Theorem 3 to describe the
asymptotic behavior of a sequence of metrics g4 introduced by Tian
[4]. When the curvature of R is negative, then for large d, a basis
®y,..., 0y, of H'(M, E* ® L*?) leads to an embedding ¢4 of M into
the Grassmanian G, n,. When ®,,...,®y, is an orthonormal basis, the
map ¢4 should have nice regularity properties. In particular, the pullback
g4 = 3¢%gcr of the standard metric gg, on G, N, can be computed. (The
factor of % is a normalization.)

Theorem 4. If the Ricci curvature Ric(R) is negative on M, then there

are smooth (1,1)-forms mg, £ = 1,2,..., on M such that
94 = —p Ric(R) + Z d~*my. (0.10)
=1

1t follows that g4 approaches —p Ric(R) in the C*™ topology.

When E = L, this result was obtained by Tian [4] in the C?-topology,
and as noted above by Zelditch in the C*-topology. In [6], the Bergman
projection on L?(12, E) was used to prove an isometric embedding theorem
for holomorphic vector bundles.

I would like to express my gratitude to the Taniguchi Foundation for
having invited me to attend the conference in Japan last summer. I would
like to thank Larry Tong for some very helpful discussions and also Betty
Gick and Judy Snider for patiently typing several versions of this paper.

1. The Bergman projection

Let E be a holomorphic vector bundle over a complex manifold 2 and
let ( , ) bea Hermitian metric on E. Given a metric g on the tangent
bundle, we obtain a volume form vol,, so we can define a norm on sections

of E on Q by
IF|I? = /(F7 F) vol,. (1.1)
Q

Ifd,, v =1,2,... is an orthonormal basis of A%(Q2, E), the set of holomor-
phic sections of E, then the Bergman projection P: L*(Q2, E) — A%(Q, E)
can be written as (PF)(z) = >0 (F,$,)®,(2).

In order to describe the kernel of P, let ef,... ,ep and ef, ... ,€p be
frames for E in neighborhoods U and V, respectively. We let Fy;, (PF)y,
etc., denote the column vector of coefficients of F' and PF with respect to
€ls---epand ef,... e, If we define a p x p matrix Ay(w) by [Ajx(w)] =
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(ex(w), ej(w)), and if F is supported in U, then we obtain
(PE)(:) = [ 308 (208 w) Au(u) Fo(w) voly(w).
Thus the kernel K (z,w) defined by
(PF)(2) = /QK(z,w)F(w) volg
.takes values in Hom (E,,, E,), and the local representation of K in V x U

18
Kvu(z,w) =Y &,v(2)®}y(w)Av(w).

Moreover, it follows immediately that the usual property that K is holo-
morphic in z and anti-holomorphic in w becomes Kyy(z,w)A;*(w) is
holomorphic in z and anti-holomorphic in w.

Closely related to the Bergman kernel is the quantity B(z) =

Z|<I>,,(z)]2, which, relative to the frame e,... ,ep in U, equals

Z ®; 1 (2)Au(2)®,u(z). By taking the trace, we see that

tr (B,,u(2)®} y(2)Av(2)) = &}y Au(2)®,u(2),
so that by summing over v, we obtain
tr K(z,2) = B(2). (1.2)

Our goal is to show that K(z,w) can be written as a Fourier integral
operator, just as in the well known case when FE is the trivial bundle and
( , ) and g are the standard metrics, as proved by Boutet de Monvel
and Sjostrand in [1].

We first consider the local problem and assume that D is a strictly
pseudoconvex domain in C" and suppose that smooth sections iy ¢4 58
of a vector bundle E are defined on D. We assume that (, )isa
metric defined on E and we define a matrix A’ by Al (2) = (ex(2), ej(2)).
If in addition there is a volume element vol(z) = b(z) voly, where vol, is
the Euclidean volume element in C", then a global norm on sections of
E is given by ||F||> = [, F*AF voly, where A = A’b, and where in the
integral F' denotes the column vector given by the coefficients F Liens golip

of F = Z Fres.
k=1



