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Chapter 1

BROUWER DEGREE THEORY

Let R be the real numbers, R* = {z = (21,22, - ,&n) : ; € Rfori =
1,2,---,n} with |z| = (Zz;lxlz)% and let @ C R™, and let f : Q@ — R"
be a continuous function. A basic mathematical problem is: Does f(x) = 0
have a solution in Q7 It is also of interest to know how many solutions are
distributed in €. In this chapter, we will present a number, the topological
degree of f with respect to €2 and 0, which is very useful in answering these
questions. To motivate the process, let us first recall the winding number of
plane curves, a basic topic in an elementary course in complex analysis. Let
C be the set of complex numbers, I' C C an oriented closed C! curve and
a € C\T. Then the integer

w(l,a) = L/F ! dz (1)

271 z—a

is called the winding number of I" with respect to a € C'\T'. Now, let G C C
be a simply connected region and f : G — C be analytic and I' C G a closed
C! curve such that f(z) # 0 on I'. Then we have

1 1 1 [ f(2)

w(f(T),0) = e . ;dz =3 0 dz = ;w(nzi)ai, (2)

where z; are the zeros of f in the region enclosed by I' and «; are the corre-
sponding multiplicites. If we assume in addition that " has positive orientation
and no intersection points, then we know from Jordan’s Theorem, which will
be proved later in this chapter, that w(I', z;) = 1 for all z;. Thus (2) becomes

w(f(T),0) = Za (3)

So we may say that f has at least |w(f(T"),0)| zeros in G. The winding number
is a very old concept which goes back to Cauchy and Gauss. Kronecker,
Hadamard, Poincare, and others extended formula (1). In 1912, Brouwer [32]
introduced the so-called Brouwer degree in R™ (see Browder [35], Sieberg [277]
for historical developments). In this chapter, we introduce the Brouwer degree
theory and its generalization to functions in VM O. This chapter is organized
as follows:

In Section 1.1 we introduce the notion of a critical point for a differentiable
function f. We then prove Sard’s Lemma, which states that the set of critical
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points of a C! function is “small”. Our final result in this section shows how
a continuous function can be approximated by a C™ function.

In Section 1.2 we begin by defining the degree of a C' function using the
Jacobian. Also we present an integral representation which we use to define
the degree of a continuous function. Also in this section we present some
properties of our degree (see theorems 1.2.6, 1.2.12, and 1.2.13) and some
useful consequences. For example, we prove Brouwer’s and Borsuk’s fixed
point theorem, Jordan’s separation theorem and an open mapping theorem. In
addition we discuss the relation between the winding number and the degree.

In Section 1.3 we discuss some properties of the average value function and
then we introduce the degree for functions in VMO.

In Section 1.4 we use the degree theory in Section 1.2 to present some exis-
tence results for the periodic and anti-periodic first order ordinary differential
equations.

1.1 Continuous and Differentiable Functions
We begin with the following Bolzano’s intermediate value theorem:

Theorem 1.1.1. Let f : [a,b] — R be a continuous function, then, for m
between f(a) and f(b), there exists zo € [a, b] such that f(z) = m.

Corollary 1.1.2. Let f : [a,b] — R be a continuous function such that
f(a)f(b) < 0. Then there exists zo € (a,b) such that f(zq) = 0.

Corollary 1.1.3. Let f : [a,b] — [a,b] be a continuous function. Then
there exists zg € [a, b] such that f(z¢) = 0.

Let 2 C R™ be an open subset. We recall that a function f : § — R"
is differentiable at zo € Q if there is a matrix f’(z¢) such that f(zo 4+ h) =

f(xo) + f'(xo)h + o(h), where zg + h € Q and %ﬁﬂ tends to zero as |h| — 0.

We use C*(£2) to denote the space of k-times continuously differentiable
functions. If f is differentiable at x, we call J¢(xq) = det f'(xo) the Jacobian
of f at zg. If J(xp) = 0, then z is said to be a critical point of f and we use
Sp(Q) = {z € Q: Jp(x) = 0} to denote the set of critical points of f, in 2. If
f7Hy) N S§(Q) =0, then y is said to be a regular value of f. Otherwise, y is
said to be a singular value of f.

Lemma 1.1.4. (Sard’s Lemma) Let Q C R" be open and f € C'().
Then p1,,(f(Sf(2)) = 0, where p,, is the n-dimensional Lebesgue measure.

Proof. Since 2 is open, Q = U2, Q;, where Q; is a cube for i = 1,2, ---.
We only need to show that u,(f(Sf(Q))) = 0 for a cube Q C Q. In fact, let
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[ be the lateral length of ). By the uniform continuity of f’ on @, for any
given € > 0, there exists an integer m > 0 such that

|f'(x) = fl(y)] < e

for all z,y € Q with |z — y| < [n—:—l Therefore, we have

F(@) - F) - ' @)@ — )] < / Py +tz - ) — F @)z - yldt

< ez —y|
for all z,y € Q with |z — y| < @ We decompose @ into r cubes, Q?, o
diameter %, 1 =1,2,---,r. Since T is the lateral length of ¢, we have

r = m". Now, suppose that Q'NS¢(Q) # 0. Choosing y € Q'NS¢ (), we have

fy+z)—f(y) = f'(y)z+R(y, ) for all 2 € Q' —y, where |R(y, z+y)| < eX2L.
Therefore, we have

F(QY) = fy) + f'(W)(Q —y) + R(y,Q").

But f'(y) = 0, so f'(y)(Q"—y) is contained in an (n—1)- dimensional subspace
of R™. Thus, u,(f' (y)(Q° —y)) = 0, so we have

pa(F(@) < 2% (V1

)"
Obviously, f(S;(Q)) C Ul_, f(Q"), so we have

By letting € — 07, we obtain un(f(Sf(Q))) = 0. Therefore, u,(f(Sf(2))) =
0. This completes the proof.

pa(f(5£(Q)) < r2"e" (= —

Proposition 1.1.5. Let K C R" be a bounded closed subset, and f : K —
R™ continuous. Then there exists a continuous function f : R" — convf(K)
such that f(z) = f(x) for all z € K, where convf(K) is the convex hull of

f(K).

Proof. Since K is bounded closed subset, there exists at most countable
{k;:1=1,2,---} C K such that {k; :4=1,2,---} = K. Put
d(z, A)’

d(z,K) = yléllf( |z —y|, «a;(z)=max{2—

for any x ¢ K and

f(@) =1 Zisi 2 (@) (ki)
iz‘zx 27 ta(x) z ¢ K.

_ {f@% z € K,
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Then f is the desired function.

Proposition 1.1.6. Let K C R™ be a bounded closed subset and f :
K — R™ continuous. Then there exists a function g € C*°(R") such that

|f(x) — g(z)| <e.

Proof. By Proposition 1.1.5, there exists a continuous extension f of f to
R™. Define the following function

ce” TR, lz] < 1,
= 1-1
e {o, 2l > 1, B
where c satisfies [, ¢(x)dz = 1. Set px(z) = A7"¢(3) for all z € R™ and
z) = f()ér(y — x)dz for all z € R™, A > 0.
R'Vl

It is obvious that suppfy = {x € R": fa(z) #0} = {x : |z| < A} for all
A > 0. Consequently, we have fy € C* and fi(z) — f(z) uniformly on K
as A — 0%. Taking g as fy for sufficiently small A, g is the desired function.
This completes the proof.

1.2 Construction of Brouwer Degree
Now, we give the construction of Brouwer degree in this section as follows:

Definition 1.2.1. Let  C RN be open and bounded and f € C'(2). If
p ¢ f(0Q) and Jf(p) # 0, then we define

deg(f,up)= D sgnJs(@),
zef~1(p)
where deg(f,Q,p) = 0if f~(p) = 0.
The next result gives another equivalent form of Definition 1.2.1.
Proposition 1.2.2. Let Q, f and p be as in Definition 1.2.1 and let
be(z) = {Ceﬁ e (1.2)

0, otherwise,

where ¢ is a constant such that [, ¢(z) = 1. Then there exists eo = €o(p; f)
such that

deg(f,Q,p) = /quﬁe(f(m) —p)Jg(xz)dx for all €€ (0,¢0).
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Proof. The case f~!(p) = () is obvious. Assume that

fﬁl(]?) ={x1, 29, , T}

We can find disjoint balls B,(z;) and a neighborhood V; of p such that f :
B,(x;) — Vj is a homeomorphism and sgnJg(xz) = sgnJs(z;) in B;(x;). We
may take ro > 0 such that B, (p) C N, V; and set U; = B,.(z;,)Nf~ (B, (p)).
Then |f(z) — p| > § on Q\ U2, U; for some § > 0 and so, for any € < 4, we
have

n

[ or@) = p)I@rds = 3 sqniy / bo(f (@) - p)| s (@) da.

=1

But we have

= Jy—p(x),
/ b(f(2) — p)|J; (@)|dz _/ $o(z)ds = 1,
€ < min{rg,d}.
This completes the proof.

Definition 1.2.3. Let 2 C R" be open and bounded and f € C?(Q). If
p ¢ f(OK). Then we define

deg(f,,p) = deg(f,Q,p"),

where p’ is any regular value of f that |p’ — p| < d(p, f(09)).

We need to check that, for any two regular values p; and ps of f,

deg(f, Q,p1) = def](f? va2)'

For any € < d(p, f(0f2)) — max{|p — p;| : © = 1,2}, we have

deg(f, 82, pi) /cbc —pi)Js(z)dz fori=1,2.

Notice that
de(x — p2) — Pz — p1) = divw(z),

where

w(z) = (p1 — p2 / bc(z — p1 + t(p1 — p2))dt.
We show that there exists a function v € C'(R™) such that supp(v) C Q and

(e (f(x) — p2) — P (f(x) — p1)]Jf(x) = divo(z) for all z € Q.
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Lemma 1.2.4. Let @ C R be open, f € C?(f2) and let d;; be the cofactor
i 2 3
of 572 in J¢(z) and

T

1)1‘(1‘) p— {ZJ 1 w](f( ))dlj(m) T e ﬁ,

0, otherwise.
Then (vi(z),vi(x),--- ,vn(x)) satisfies divv(z) = divw(f(z))J¢(z).

Proof. Since supp(w) C B(p,r) for r < maz{lp —pi| : i = 1,2} +€ <
d(p, 09), we have

supp(v) C Q,

divi(z) = Z dikOW; (f(2))0; fr x)+ZW ©))0idy; (z),

7,k=1 j=1

where 9y = % Now, we claim that

ZNaidij(JC) =0 forj=1,2,---,N.

For any given j, let f,, denote the column

(Ocfrs Ok fj—1,0kfj41, Ok fn)-

Then we have

dLJ(x) = (‘1)Z+3d6t(f113 T 7fi—]afi+17" . 7fN)

Therefore, it follows that

N
azdw(x) = (*1)Z+]Zd€t(f1” >f:v,:_1afxi+1a“' 78ifzk7"' 7f;1:1\1)'
k=1

Set

Ak :d(it((?ifwk,le,"‘ 7fw,71af$i+1a"' afzk,,17,fwk+17"' 7fa?1\1)7

then we have ap; = a;;, and

(1)1 8,d,;(x) = (—1)* e + > (=1)F2ay

1 k>1

v

<.

(=1 1 kans,

I
M=

e
Il
—
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where 8;; = 1 for k < ¢, 8;; = 0 and &; = —d;, for i,k =1,2,--- , N. Hence
we have

N N N
1 Za"dij(x) = Z D opiar; = Z (1) " oya
i=1 ik=1 kyi=1

N
Z (1) iya; = 0.
i k=1

=

Now, we have

Dyvi(x) = Zd”dkw](f )0; fr(z +ij(f )9idij (z).

7,k=1

On the other hand, Zf\il di;0;ifr(x) = 0jJ5(x) with Kronecker’s 0.
Therefore, it follows that

divo(z Z Oxw; (f(x))8xd () = divw(f (x))Jf(x).

k,j=1
This completes the proof.
Finally, we are ready to introduce the following definition:

Definition 1.2.5. Let @ C R™ be open and bounded, f € C(Q) and
p & f(99). Then we define

deg(f,Q,p) = deg(g,%2,p),
where g € C?(Q) and |g — f| < d(p, f(OR)).

Now, one may check the following properties by a reduction to the regular
case.

Theorem 1.2.6. Let & C RY be an open bounded subset and f :  —
RY be a continuous mapping. If p ¢ f(99), then there exists an integer
deg(f, ), p) satisfying the following properties:

(1) (Normality) deg(I,Q,p) =1 if and only if p € Q, where I denotes the
identity mapping;

(2) (Solvability) If deg(f,,p) # 0, then f(z) = p has a solution in ;

(3) (Homotopy) If fi(x) : [0,1]x€Q — R is continuous and p & Useo,1)f¢(99),
then deg(f, 2, p) does not depend on ¢ € [0, 1];

(4) (Additivity) Suppose that €1, {22 are two disjoint open subsets of 2
andp ¢ f(Q_QlLJQ?) Then deg(fa Qap) = deg(f7 Qlap)+deg(f7 Q2ap);
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(5) deg(f,$2, p) is a constant on any connected component of R\ f(9Q).

As consequences of Theorem 1.2.6, we have the following results:

Theorem 1.2.7. Let f : B(0,R) C R™ — B(0, R) be a continuous map-
ping. If [f(x)| < R for all € 9B(0, R), then f has a fixed point in B(0, R).

Proof. We may assume that x # f(x) for all z € 9B(0, R). Put H(t,z) =
z — tf(x) for all (t,z) € [0,1] x B(0,R). Then 0 # H(t,x) for all [0,1] x
0B(0, R). Therefore, we have

deg(I — f,B(0, R),0) = deg(I, B(0, R),0) = 1.

Hence f has a fixed point in B(0, R). This completes the proof.
From Theorem 1.2.7, we have the well-known Brouwer fixed point theorem:

Theorem 1.2.8. Let C' C R™ be a nonempty bounded closed convex subset
and f: C — C be a continuous mapping. Then f has a fixed point in C.

Proof. Take B(0, R) such that C' C B(0,R) and let r : B(0,R) — C be a
retraction. By Theorem 1.2.7, there exists g € B(0, R) such that frzy = xo.
Therefore, xy € C, and so we have rzg = xy. This completes the proof.

Theorem 1.2.9. Let f : R" — R" be a continuous mapping and 0 € Q C
R™ with © an open bounded subset. If (f(z),z) > 0 for all z € 99, then
deg(f,Q,0) = 1.

Proof. Put H(t,z) = tx + (1 — t)f(z) for all (t,z) € [0,1] x Q. Then
0 ¢ H([0,1] x 09), and so we have

deg(f,9,0) = deg(I,2,0) = 1.
This completes the proof.

Corollary 1.2.10. Let f: R — R" be a continuous mapping. If

. S22
le|—oo  |Z]
then f(R™) = R™.

Proof. For any p € R™, it is easy to see that there exists R > 0 such that
(f(z) —p,x) > 0 for all z € dB(0, R), where B(0, R) is the open ball centered
at zero with radius R. By Theorem 1.2.9, we have

and so f(z) —p = 0 has a solution in B(0, R). This completes the proof.
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Theorem 1.2.11. (Borsuk’s Theorem) Let 2 C R™ be open bounded
and symmetric with 0 € Q. If f € C(Q) is odd and 0 ¢ f(9N), then d(f,$2,0)
is odd.

Proof. Without loss of generality, we may assume that f € C'(Q) with
J(0) # 0. Next, we define a mapping g € C(Q2) sufficiently close to f by
induction as follows:

Let ¢ € C'(R) be an odd mapping with ¢'(0) = 0 and ¢(¢) = 0 if and
only if t = 0. Put Qp = {x € Q: zx # 0} and h(z) = J((;l)) for all z € Q;.
Choose |y1]| sufficiently small such that y; is a regular value for h on ;. Put
g1(z) = f(z) — &(x1)y1, then 0 is a regular value for g; on Q.

Suppose that we have already an odd gr € C1(Q) close to f such that 0 is
a regular value for gx on Q. Then we define ggy1(z) = gr(x) — d(Tk+1)Yrr1
with |yk+1| small enough such that 0 is a regular value for g1 on Qgyq.

If x € Qgy1 and 241 = 0, then

e, gepale) =gslz), .GLH(«T) = 92(3?)
and hence J,

gisa () # 0. By induction, we also have g;,(0) = ¢7(0) = f'(0)
and so 0 is a regular value for g,,. By Definition 1.2.5 and Definition 1.2.1, we
know that

deg(f,€Q,0) = deg(gn,2,0) = sgndy, (0) + Z sgndy, (x)
z€g~1(0),z#0

and thus deg(f,,0) is odd. This completes the proof.

The following theorem shows the relationship between Brouwer degrees in
different dimensional spaces:

Theorem 1.2.12. Let 2 C R™ be an open bounded subset, 1 < m < n, let
f:Q — R™ be a continuous function and let g = I — f. If y ¢ (I — f)(09),
then

deg(g,Q,y) = deg(gm, 2N R™, y),

where g,, is the restriction of g on QN R™.

Proof. We may assume that f € C?(Q) and y is a regular value for g on
Q. A direct computation yields that J,(z) = J,, (x) and so the conclusion
follows from Definition 1.2.1. This completes the proof.

Let © C R™ be open and bounded and let f € C(Q2). By the homotopy
invariance of deg(f,Q,y), we know that deg(f,€,y) is the same integer as y
ranges through the same connected component U of R™\ f(92). Therefore, it
is reasonable to denote this integer by deg(f, 2, U). The unbounded connected
component is denoted by Us,. Now, we have the product formula:

Theorem 1.2.13. Let Q@ C R™ be an open bounded subset, f € C(Q),
g € C(R™) and let U; be the bounded connected components of R™\ f(0€2).



10 Topological Degree Theory and Applications
If p ¢ (gf)(09), then

" deg(gf, Shp) = Y deg(f. . Ui)deg(g, Ui, p), (1.2.1)

where only finitely many terms are not zero.

Proof. We first prove (1.2.1) only has finitely many non-zero terms. Take
r > 0 such that f(Q) C B.(0). Then it follows that M = B,(0) N ¢~ (p)
is compact, M C R™\ f(9f2) = U;>1U; and there exists finitely many i, say
i=1,2,---,t, such that Uﬁi}Ui O M, where Uyy1 = Uso N Bry1. We have

de.g(f797Ut+l) :07 deg(g7 Ulvp) =0

for i >t + 2 since U; C B,(0) and g~ '(y) NU; = @ for j > t + 2. Therefore,
the right side of (1.2.1) has only finitely many terms different from zero.

We first suppose that f € C'(Q),g € C'(R") and p is a regular value of
gf, so we have

deg(gf, p)= D sgnlgp@)= D sgnJy(f(x))sgnls()
z€(gf)~(p) z€(g9f)~1(p)
and note

Z sgndg(z)sgnds(x)

zef~1(2),z€97 1 (p)

= Z sgndy(z)| Z sgndy(z)]

z€g~1(p),z€f() zef~1(2)

= Z sgndg(z)deg(f, 9, 2)

2€£(Q),9(2)=p

- Z Z sgndy(z)deg(f,Q, z)

i=1 z€U;
= Z deg(fa Qa Ul)deg(gv U7.~p)

For the general case f € C(f2) and g € C(R™), Put
Vin = {2 € B,41(0) \ f(09) : deg(f, 9, z) = m},
N,, ={i € N :deg(f,Q,U;) = m}.

Obviously, V,,, = Uien,, U; and thus we have

Zdeg(ﬁ Q,U;)deg(g, Ui, p) = > [ Y deg(g,Us,p)] = Y deg(g, Vi, p)-

m 1€ENy,



