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Preface

This volume collects the papers accepted for presentation at the 12th IMA Con-
ference on the Mathematics of Surfaces, held at Ranmoor Hall, Sheffield, UK,
September, 4-6, 2007. Contributors to this volume include authors from many
countries in America, Asia, and Europe. The papers presented here reflect the
applicability of various aspects of mathematics to engineering and computer sci-
ence, especially in domains such as computer-aided design, computer vision, and
computer graphics.

The papers in the present volume include eight invited papers as well as a
larger number of submitted papers. They cover a range of ideas from underlying
theoretical tools to industrial uses of surfaces. Surface types considered range
from meshes to parametric and implicit surfaces; some papers investigate gen-
eral classes of surfaces while others focus more specifically on surfaces such as
developable surfaces and Dupin’s cyclides. Research is reported on theoretical
aspects of surfaces including topology, parameterization, differential geometry,
and conformal geometry, and also more practical topics such as geometric tol-
erances, computing shape from shading, and medial axes for industrial applica-
tions. Other specific areas of interest include subdivision schemes, solutions of
differential equations on surfaces, knot insertion, surface segmentation, surface
deformation, and surface fitting.

We would like to thank all those who attended the conference and helped to
make it a success. We are particularly grateful to Lucy Nye at the Institute of
Mathematics and its Applications for her hard work in organizing many aspects
of the conference, and to Anna Kramer and Frank Holzwarth of Springer for their
help in publishing this volume. Following this preface is a list of distinguished
researchers who formed the International Programme Committee, and who freely
gave their time in helping to assess papers for these proceedings. Due to their
work, many of the papers have been considerably improved. Our thanks go to
all of them, and to other people upon whom they called to help with refereeing.

June 2007 Ralph Martin
Malcolm Sabin
Joab Winkler
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Regularity Criteria for the Topology of
Algebraic Curves and Surfaces

Lionel Alberti and Bernard Mourrain

GALAAD, INRIA, BP 93, 06902 Sophia Antipolis, France
mourrain@sophia.inria.fr

Abstract. In this paper, we consider the problem of analysing the shape
of an object defined by polynomial equations in a domain. We describe
regularity criteria which allow us to determine the topology of the im-
plicit object in a box from information on the boundary of this box. Such
criteria are given for planar and space algebraic curves and for algebraic
surfaces. These tests are used in subdivision methods in order to produce
a polygonal approximation of the algebraic curves or surfaces, even if it
contains singular points. We exploit the representation of polynomials in
Bernstein basis to check these criteria and to compute the intersection of
edges or facets of the box with these curves or surfaces. Our treatment of
singularities exploits results from singularity theory such as an explicit
Whitney stratification or the local conic structure around singularities.
A few examples illustrate the behavior of the algorithms.

1 Introduction

In this paper, we consider the problem of analysing the shape of an object
defined by polynomial equations on a bounded domain. Such a problem appears
naturally when one has to compute with (algebraic) implicit surfaces [1], but
also in algorithms on parameterised curves and surfaces. Typically computing
the intersection of two parameterised surfaces leads to the problem of describing
or analysing an implicit curve in a 4-dimensional space [2,3].

Our aim is to describe subdivision methods, which given input equations defin-
ing such an implicit object, compute a linear approximation of this object, with
the same topology. The field of application of such methods is Geometric Model-
ing, where the (semi)-algebraic models used to represent shapes are considered
approximations of the real geometry. That is, either their coefficients are known
with some error or the model itself is an approximation of the actual geometry.
In this modelisation process, it is assumed that making the error tend to 0, the
representation converges to the actual geometry, at least conceptually. We are
going to follow this line, with two specific objectives in mind:

— provide guarantees if possible.
— adapt the computation to the local difficulties of the problem.

Several methods exist to visualize or to mesh a (smooth) implicit surface. Ray
tracing techniques [4] which compute the intersection between the ray from the

R. Martin, M. Sabin, J. Winkler (Eds.): Mathematics of Surfaces 2007, LNCS 4647, pp. 1-28, 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 L. Alberti and B. Mourrain

eye of the observer and the first object of the scene, produce very nice static
views of these surfaces. However isolated singular curves are not well treated
and the output of such methods is an image, not a mesh that can be used for
other computation.

The famous ‘marching cube’ method [5,6] developed in order to reconstruct
images in 3 dimensions starting from medical data, is based on the construction
of grids of values for the function and of sign analysis. It is not adaptive to the
geometry of the shape, gives no guarantee of correctness and applies only to
smooth surfaces.

Marching polygonizer methods improve the adaptivity of the marching cube
by computing only the ‘useful’ cells [7,8,9], that is those which cut the surface.
The algorithm starts from a valid cube (or tetrahedron), and propagate towards
the connected cells, which cut the surface. Other variants of the Marching Cube
approach have been proposed, to adapt to the geometry of the surface but still
with a large number of voxels, even in regions where the surface is very regular.
Moreover, the treatment of singularities remains a (open) problem.

Another family of methods called sample methods have also been used. One
type uses moving particles on the surface, with repulsion forces which make it
possible to spread the particles over the surface [10]. Another type starts from
an initial set of sample points on the surface and refine it by inserting new points
of the surface, in order to improve the approximation level. Techniques based
on Delaunay triangulation of these points have been used for instance for this
purpose [11,12].

In the presence of singularities, these methods are not producing correct out-
put and refining the precision parameter of these algorithms increases the num-
ber of output points, without solving these singularity problems.

In a completely different direction, methods inspired by Cylindrical Algebraic
Decomposition [13] have been proposed to analyse the topology of algebraic
curves or surfaces, even in singular cases. The approach has been applied suc-
cessfully to curves in 2D, 3D, 4D [2,14,15,16,17] and to surfaces [18,19,20]. They
use projection techniques based on a conceptual sweeping line/plane perpendic-
ular to some axis, and detect the critical topological events, such as tangents
to the sweeping planes and singularities. They involve the exact computation of
critical points and genericity condition tests or adjacency tests. The final output
of these methods is a topological complex of points, segments, triangles isotopic
to the curve or the surface.

They assume exact input equations and rely of the computation of sub-
resultant sequences or calculus with algebraic numbers. This can be a bottleneck
in many examples with large degree and large coefficients. Moreover, they are
delicate to apply with approximate computation.

In order to combine approximation properties with certification and adaptiv-
ity, we consider subdivision methods, which proceed from a large input domain
and subdivide it if a regularity criterion is not satisfied. This regularity criterion
is designed so that the topology of the curve or the surface lying in the do-
main can be determined easily. Unfortunately, this type of approach has usually
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difficulties when singular points exists in the domain, which make the regularity
test failing and the subdivision process going one until some threshold € on the
size of the boxes is reached. The obstacle comes from the fact that near a sin-
gularity, what ever scale of approximation you choose, the shape or topology of
the algebraic objects remains similar. In this paper, we will focus on a regularity
criterion which allows to deduce the topology of the variety in a domain, from its
intersection with the boundary of the domain. We exploit the local conic struc-
ture near points on an algebraic curve or surface, to device algorithms which for
a small enough threshold e compute the correct topology, even in the presence
of singular points.

These subdivision methods have been already used for solving several equa-
tions [21,22]. We recall the recent improvements proposed in [23], which rely on
a polynomial solver as the basic ingredient of algorithms for curves and surfaces.
Extension of this approach to higher dimensional objects have also been con-
sidered [24,14,25,26]. We will recall the subdivision method described in [27] for
curves in 3D. It is based on a criterion, which allows us to detect easily when
the topology of the curve in a box is uniquely determined from its intersection
with the boundary of the box. The treatment of smooth surfaces by subdivision
methods as been described in [28]. In this paper, we extend this approach by
encompassing the singular case. The approach relies on the computation of the
topology of a special curve on the surface, called the polar variety. It is used to
detect points at which the surface has a conic structure, meaning we can tell
what the topology is by uniquely looking at its intersection with the boundary
of a box around the point.

Definitions
Before going into details, here are the notations and definitions we use hereafter:

— For subset domain S C R™, we denote by S° its interior, by S its closure,
and by 0S its boundary.

— We call any closed set D such that D° = D, a domain.

— We call any connected smooth curve C such that CNdD # () and CND° # 0,
a branch (relative to a domain D), .

— We call any connected submanifold (possibly with boundary) included in the
surface (resp. curve), with same the dimension as the surface (resp. curve),a
patch of a surface (resp. curve).

— We call a point where the tangent space to the surface (resp. curve) contains
the direction x (resp. y, z), a z-critical point (resp. y,z-critical point) of a
surface (resp. curve).

— For any point p € R™ and r > 0, the hypersphere (resp. disk) centered
at p of radius r is denoted by S(p,r) = {¢ € R™;||g — p|| = r} (resp.
D(p,r) = {qg € R™;[lg —pll < r}).

— By expressions such as ‘topology computation’ or ‘determine the topology’
we mean that we generate an embedded triangulation whose vertices are on
the original surface (resp. curve) and which is homeomorphic to that surface
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(resp. curve). Our construction actually leads to an embedded triangulation
that is isotopic (meaning there is a continuous injective deformation of one
onto the other) to the original variety, but this would require some more
careful examination of our construction.

— For a box B = [ag,bo] X [a1,b1] X [az,b2] C R3, its z-faces (resp. y-face,
z-face) are its faces normal to the direction z (resp. y, z).

The size of B, denoted by |B|, is |B| = max{|b; — a;[;i =1,...,n}.

2 Polynomial Equations

This section recalls the theoretical background of Bernstein polynomial
representation and how it is related to the problem we want to solve.

2.1 Bernstein Basis Representation

Given an arbitrary univariate polynomial function f(z) € KK, we can convert it
to a representation of degree d in Bernstein basis, which is defined by:

x) = ZbiBl‘-i(x), and (1)

Bi@) = (§) ' - @)

where b; is usually referred as controlling coefficients. Such conversion is done
through a basis conversion [29]. The above formula can be generalized to an
arbitrary interval [a, b] by a variable substitution 2’ = (b — a)x + a. We denote
by B:(z;a b)( )(@ — a)'(b — 2)47*(b — a)~? the corresponding Bernstein basis
on [a,b]. There are several useful properties regarding Bernstein basis given as
follows:

— Convez-Hull Properties: As )", Bi(z;a,b) = 1 and Vz € [a, b], B, “(z;a,b) >0
where i = 0, ..., d, the graph of f( ) = 0, which is given by (z, f(:c)) should
always lie w1th1n the convex-hull defined by the control coefficients (%,b:)
[29].

— Subdivision (de Casteljau): Given to € [0, 1], f(z) can be represented by:

d d
%) = Z b Bi(z;a,c) = Z b Bi(z; c,b), where (3)
i=0 i=0
b = (1~ t0)b* ™ + tob* 7V and ¢ = (1 — to)a + tob. (4)
By a direct extension to the multivariate case, any polynomial f(z1,...,z,) €
R[z1,...,z,] of degree d; in the variable z;, can be decomposed as:

(-Z'la ..,.’L‘n) - Z Z bzl, Bdl xlaa:hb )"'B:‘i’;(mn;anybn)-

11 =0 ‘ln =0



Regularity Criteria for the Topology of Algebraic Curves and Surfaces 5

where (B;l1 (z1;a1,b1) - BF" (Zn; @n, bn))o<ii<ds,...,0<in<d, i the tensor product
Bernstein basis on the domain B := [a1,b1] X --+ X [an,by] C R™ and b =
(biy....in J0<ir<ds,...,0<in<d, are the control coefficients of f on B. The polynomial
f is represented in this basis by the n'? order tensor of control coefficients b =
(Biy,....in J0<i<d1,0<j<ds,0<k<ds-

De Casteljau algorithm also applies in each of the direction z;, , 1 =1,...,n
so that we can split this representation in these directions. We use the following
properties to isolate the roots:

This representation provides a simple way to tell the sign of a function in a
domain B.

Lemma 2.1. If all the coefficients by, .. .. of f in Bernstein basis of B :=
[a1,b1] X --+ X [an,bn] C R™ have the same sign € € {—1,1}, then ef(x) > 0
for x € B.

Proof. As the Bernstein basis elements of the domain B are positive on B and
their sum is 1, for x € B, f(x) is a barycentric combination of the coefficients
bi,....i,., of sign e. This f(x) is of sign e.

A consequence is the following interesting property:

Lemma 2.2. Let f and g by polynomials of degree d; inx; (i =1,...,n) and let
biy....in and ciy . ;. be their coefficients in the Bernstein basis of B := [ay1, b1] X
<o X [an, bn). Ifbiy,. i < Ciy,iy for 0<i; <dj,j=1,...,n then f(x) < g(x)
forx € B.

It will be used in algorithm for computing the topology of implicit curves and
surfaces as follows. When the input coefficients of a polynomial f are large ra-
tional numbers, instead of working with this expensive arithmetic, we will first
compute its coeflicients in the Bernstein basis of the given domain B, then nor-
malize them and finally round them up and down to machine precision arithmetic
(ie. double). This produces two enveloping functions f, f with the property:

f(x) < f(x) < f(x),Vx € B.

These two enveloping polynomials can be used to test sign conditions and
regularity criteria, providing certificated results in many situations.

2.2 Univariate Subdivision Solver

Another interesting property of this representation related to Descartes rule of
signs is that there is a simple and yet efficient test for the existence of real
roots in a given interval. It is based on the number of sign variation V' (b) of the
sequence b = [by,. .., bx] that we define recursively as follows:

1, if bibi+1 <0
0, else

V(bk+1) = V(bk) + { (5)

With this definition, we have:
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Proposition 2.1. Given a polynomial f(z) = > b;B¢(x;a,b), the number N
of real roots of f on]a,b| is less than or equal to V(b), where b= (b;),i =1,...,n
and N = V(b) mod 2.

With this proposition,

— if V(b) = 0, the number of real roots of f in [a, b] is 0;
— if V(b) = 1, the number of real roots of f in [a, b] is 1.

This yields the following simple and efficient algorithm [30]:

Algorithm 1
INPUT: A precision € and a polynomial f represented in the Bernstein basis of

an interval [b,a): f = (b, [a,b]).

— Compute the number of sign changes V (b).
If V(b) > 1 and |b — a| > €, subdivide the representation into two sub-
representations b~ , b", corresponding to the two halves of the input interval
and apply recursively the algorithm to them.
— IfV(b) > 1 and |b — a| < €, output the €/2-root (a + b)/2 with multiplicity
V(b).
If V(b) = 0, remove the interval [a,b].
— IfV(b)=1, the interval contains one root, that can be isolated with precision e.

|

OUTPUT: list of subintervals of [a,b] containing exactly one real Toot of f or of
e-roots with their multiplicities.

In the presence of a multiple root, the number of sign changes of a representation
containing a multiple root is bigger than 2, and the algorithm splits the box until
its size is smaller than e.

To analyze the behavior of the algorithm, a partial inverse of Descartes’ rule
and lower bounds on the distance between roots of a polynomial have been used.
It is proved that the complexity of isolating the roots of a polynomial of degree
d, with integer coefficients of bit size < 7 is bounded by O(d*7?) up to some
polylog factors. See [31,30] for more details.

Notice that this localization algorithm extends naturally to B-splines, which
are piecewise polynomial functions [29].

The approach can also be extended to polynomials with interval coefficients,
by counting 1 sign variation for a sign sub-sequence +,?,— or —,?, +; 2 sign
variations for a sign sub-sequence +,?,+ or —, 7, —; 1 sign variation for a sign
sub-sequence ?,?, where ? is the sign of an interval containing 0. Again in this
case, if a family f of polynomials is represented by the sequence of intervals
b = [bo, . ..,bq] in the Bernstein basis of the interval [a, b]

— if V(b) = 1, all the polynomials of the family f have one root in [, b],

— if V(b) = 0, all the polynomials of the family f have no roots in [a, b].
The same subdivision algorithm can be applied to polynomials with interval
coefficients, using interval arithmetic. This yields either intervals of size smaller
than €, which might contain the roots of f = 0 in [a, b] or isolating intervals for
all the polynomials of the family defined by the interval coefficients.



