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CHAPTER

HISTORICAL
OVERVIEW

Superconductivity was discovered in 1911 by H. Kamerlingh Onnes' in Leiden,
just 3 years after he had first liquefied helium, which gave him the refrigeration
technique required to reach temperatures of a few degrees Kelvin. For decades, a
fundamental understanding of this phenomenon eluded the many scientists who
were working in the field. Then, in the 1950s and 1960s, a remarkably complete
and satisfactory theoretical picture of the classic superconductors emerged. This
situation was overturned and the subject was revitalized in 1986, when a new class
of high-temperature superconductors was discovered by Bednorz and Miiller.”
These new superconductors seem to obey the same general phenomenology as
the classic superconductors, but the basic microscopic mechanism remains an
open and contentious question at the time of this writing.

The purpose of this book is to introduce the reader to the field of super-
conductivity, which remains fascinating after more than 80 years of investigation.
To retard early obsolescence, we shall emphasize the aspects which seem to be
reasonably securely understood at the present time.

The goal of this introductory chapter is primarily to give some historical
perspective to the evolution of the subject. All detailed discussion is deferred to
later chapters, where the topics are examined again in much greater depth. We
start by reviewing the basic observed electrodynamic phenomena and their early

'"H. Kamerlingh Onnes, Leiden Comm. 120b, 122b, 124¢ (1911).
>G. Bednorz and K. A. Miiller, Z. Phys. B64, 189 (1986).
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phenomenological description by the Londons. We then briefly sketch the sub-
sequent evolution of the concepts which are central to our present understanding.
This quasi-historical review of the development of the subject is probably too
terse to be fully understood on the first reading. Rather, it is intended to provide
a quick overview to help orient the reader while reading subsequent chapters, in
which the ideas are developed in sufficient detail to be self-contained. In fact,
some readers have found this survey more useful to highlight the major points
after working through the details in subsequent chapters.

1.1 THE BASIC PHENOMENA

What Kamerlingh Onnes observed was that the electrical resistance of various
metals such as mercury, lead, and tin disappeared completely in a small tempera-
ture range at a critical temperature 7., which is characteristic of the material. The
complete disappearance of resistance is most sensitively demonstrated by experi-
ments with persistent currents in superconducting rings, as shown schematically in
Fig. 1.1. Once set up, such currents have been observed to flow without measurable
decrease for a year, and a lower bound of some 10° years for their characteristic
decay time has been established by using nuclear resonance to detect any slight
decrease in the field produced by the circulating current. In fact, we shall see that
under many circumstances we expect absolutely no change in field or current to
occur in times less than 10" years! Thus, perfect conductivity is the first traditional
hallmark of superconductivity. It is also the prerequisite for most potential appli-
cations, such as high-current transmission lines or high-field magnets.

The next hallmark to be discovered was perfect diamagnetism, found in 1933
by Meissner and Ochsenfeld.** They found that not only a magnetic field is
excluded from entering a superconductor (see Fig. 1.2). as might appear to be

FIGURE 1.1
Schematic diagram of persistent current experiment.

*W. Meissner and R. Ochsenfeld, Naturwissenschaften 21, 787 (1933).
YActually, the diamagnetism is perfect only for hulk samples, since the field does penctrate a finite
distance A, typically approximately 500 A.
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FIGURE 1.2

Schematic diagram of exclusion of magnetic flux from interior of
massive superconductor. A is the penetration depth. typically only
500 A.

explained by perfect conductivity, but also that a field in an originally normal
sample is expelled as it 1s cooled through 7. This certainly could not be explained
by perfect conductivity, which would tend to trap flux in. The existence of such a
reversible Meissner effect implies that superconductivity will be destroyed by a
critical magnetic field H,., which is related thermodynamically to the free-energy
difference between the normal and superconducting states in zero field, the so-
called condensation energy of the superconducting state. More precisely, this
thermodynamic critical field H. is determined by equating the energy H’/8x per
unit volume, associated with holding the field out against the magnetic pressure,
with the condensation energy. That is,

H(T)

¢

87

=fa(T) = f5(T) (1.1)

where f, and f, are the Helmholtz free energies per unit volume in the respective
phases in zero field. It was found empirically that H.(T) is quite well approxi-
mated by a parabolic law

H(T) ~ H0)[1 — (T/T.)’] (1.2)

illustrated in Fig. 1.3. While the transition in zero field at 7, is of second order,
the transition in the presence of a field is of first order since there is a discontin-
uous change in the thermodynamic state of the system and an associated latent
heat.
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H
H.(0) H(T)
Normal
Superconducting
FIGURE 1.3
0 T. T  Temperature dependence of the critical field.

1.2 THE LONDON EQUATIONS

These two basic electrodynamic properties, which give superconductivity its
unique interest, were well described in 1935 by the brothers F. and H.
London,” who proposed two equations to govern the microscopic electric and
magnetic fields

7]
E = 3.{AJ;) (1.3)
h = —c curl (AJy) (1.4)
2
where A _Am m (1.5)

c? n,e?

is a phenomenological parameter. It was expected that n,, the number density of
superconducting electrons, would vary continuously from zero at 7, to a limiting
value of the order of n, the density of conduction electrons, at 7' T,. In (1.4), we
introduce our notational convention of using h to denote the value of the flux
density on a microscopic scale, reserving B to denote a macroscopic average value.
Although notational symmetry would suggest using’e for the microscopic local
value of E in the same way, to avoid constant confusion with the charge ¢ of the
electron, we shall do so only in the few cases® where it is really useful. These
notational conventions are discussed further in the appendix.

F. and H. London, Proc. Roy. Soc. (London) A149, 71 (1935).

“The fundamental basis for our notational asymmetry in treating E and B is in the Maxwell equations
curl h =4nJ/c¢ and curl e = —(1/¢)0h/0t. Superconductors in equilibrium can have nonzero J,, as
described by the London equations, causing h to vary on the scale of A. But in equilibrium, or even
steady state, Oh/0r = 0, so that e is zero, or at least constant in space, so the use of both e and E offers
no advantage. The distinction is useful only in discussing time-dependent phenomena such as motion
of flux-bearing vortices in type Il superconductors.
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The first of these equations (1.3) describes perfect conductivity since any
electric field accelerates the superconducting electrons rather than simply sustain-
ing their velocity against resistance as described in Ohm’s law in a normal con-
ductor. The second London equation (1.4), when combined with the Maxwell
equation curl h = 4nJ/c¢, leads to

V’h = % (1.6)
This implies that a magnetic field is exponentially screened from the interior of a
sample with penetration depth A, i.e., the Meissner effect. Thus, the parameter A is
operationally defined as a penetration depth; empirically, the temperature depen-
dence of A is found to be approximately described by

ANT) = AO)[1 = (T/T) "2 (1.7)

The implications of the London equations are illustrated much more thoroughly
in Chap. 2.

A simple, but unsound,‘‘derivation” of (1.3) can be given by computing
the response to a uniform electric field of a perfect normal conductor, i.e., a
free-electron gas with mean free path ¢ = co. In that case, d(mv)/dt = ¢E, and
since J = nev, (1.3) follows. But this computation is not rigorous for the spatially
nonuniform fields in the penetration depth, for which (1.3) and (1.4) are most
useful. The fault is that the response of an electron gas to electric fields is non-
local; i.e., the current at a point is determined by the electric field averaged over a
region of radius ~¢ about that point. Consequently, only fields that are uniform
over a region of this size give a full response; in particular, the conductivity
becomes infinite as ¢ — oo only for fields filling all space. Since we are dealing
here with an interface between a region with field and one with no field, it is clear
that even for ¢ = oo, the effective conductivity would remain finite. For the case
of a high-frequency current, this corresponds to the extreme anomalous limit of
the normal skin effect, in which the surface resistance remains finite even as
¢ — oo.

A more profound motivation for the London equations is the quantum one,
emphasizing use of the vector potential A, given by F. London’ himself. Noting
that the canonical momentum p is (mv+eA/c), and arguing that in the absence of
an applied field we would expect the ground state to have zero net momentum (as
shown in a theorem® of Bloch), we are led to the relation for the local average
velocity in the presence of the field

"F. London, Superfluids, vol. I, Wiley, New York, 1950.
8This theorem is apparently unpublished, though famous. See p. 143 of the preceding reference.
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This will hold if we postulate that for some reason the wavefunction of the super-
conducting electrons is “‘rigid”’ and retains its ground-state property that (p) =0.
Denoting the number density of electrons participating in this rigid ground state
by n,, we then have

—n,e*A B —A
me  Ac

J.s‘ = n.\'e<v.\‘> = (18)
Taking the time derivative of both sides yields (1.3) and taking the curl leads to
(1.4). Thus, (1.8) contains both London equations in a compact and suggestive
form.”

This argument of London leaves open the actual value of ng, but a natural

upper limit is provided by the total density of conduction electrons n. If this is

inserted in (1.5), we obtain
me2 \'?
AL(0) = ( ) (1.9)

47ne?

The notation here is chosen to indicate that this is an ideal theoretical limit as
T — 0. Note that n, is expected to decrease continuously to zero as 7 — T,
causing A\(7') to diverge at 7, as described by (1.7). Careful comparisons of the
rf penetration depths of samples in the normal and superconducting states have
shown that the superconducting penetration depths A are always larger than
Ar(0), even after an extrapolation of the data to 7 = 0. The quantitative expla-
nation of this excess penetration depth required introduction of an additional
concept by Pippard: the coherence length &.

1.3 THE PIPPARD NONLOCAL
ELECTRODYNAMICS

Pippard'® introduced the coherence length while proposing a nonlocal general-
ization of the London equation (1.8). This was done in analogy to Chambers’s
nonlocal generalization'' of Ohm’s law from J(r) = oE(r) to

J(r) = dr’

3_UJR[R -E(r")]e R/
 4nd

R4

“Since (1.8) is evidently not gauge-invariant, it will only be correct for a particular gauge choice. This
choice, known as the London gauge, is specified by requiring that div A = 0 (so that divJ = 0), that
the normal component of A over the surface be related to any supercurrent through the surface by
(1.8), and that A — 0 in the interior of bulk samples.

'""A. B. Pippard, Proc. Roy. Soc. (London) A216, 547 (1953).
""This approach of Chambers is discussed, e.g.. in J. M. Ziman, Principles of the Theory of Solids,
Cambridge University Press, New York (1964), p. 242.
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where R = r — r’; this formula takes into account the fact that the current at a
point r depends on E(r’) throughout a volume of radius ~¢ about r. Pippard
argued that the superconducting wavefunction should have a similar character-
istic dimension & which could be estimated by an uncertainty-principle argument,
as follows: Only electrons within ~k 7, of the Fermi energy can play a major role
in a phenomenon which sets in at 7, and these electrons have a momentum range
Ap ~ kT,./vp, where vg, is the Fermi velocity. Thus,

Ax2h/Ap = hvp/kT,
leading to the definition of a characteristic length

hUF
kT,

where « is a numerical constant of order unity, to be determined. For typical
elemental superconductors such as tin and aluminum, &, > A.(0). If £ represents
the smallest size of a wave packet that the superconducting charge carriers can
form, then one would expect a weakened supercurrent response to a vector poten-
tial A(r) which did not maintain its full value over a volume of radius ~§, about
the point of interest. Thus, £ plays a role analogous to the mean free path £ in the
nonlocal electrodynamics of normal metals. Of course, if the ordinary mean free
path is less than £, one might expect a further reduction in the response to an
applied field.

Collecting these ideas into a concrete form, Pippard proposed replacement
of (1.8) by

& =a (1.10)

_ 3 R[R - A(r')] —R/E .1
Ji(r) = 47r_£0ACJ R e dr (1.11)

where again R = r — r’ and the coherence length £ in the presence of scattering
was assumed to be related to that of pure material £, by

1 1 1
£ + 7 (1.12)
Using (1.11), Pippard found'? that he could fit the experimental data on both tin
and aluminum by the choice of a single parameter ¢ = 0.15 in (1.10). [We shall see
in Chap. 3 that the microscopic theory of Bardeen, Cooper, and Schrieffer'?
(BCS) confirms this form, with the numerical constant ¢ = 0.18.] For both
metals, A is considerably larger than A, (0) because A(r) decreases sharply over
a distance A\ < &), giving a weakened supercurrent response, and hence an
increased field penetration. Moreover, the increase of A\ with the decreasing
mean free path predicted by (1.11) and (1.12) was consistent with data on a series

'>T. E. Faber and A. B. Pippard, Proc. Roy. Soc. (London) A231, 336 (1955).
'3J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).



