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Preface

The theory of inverse problems for differential equations is being ex-
tensively developed within the framework of mathematical physics. In the
study of the so-called direct problems the solution of a given differential
equation or system of equations is realised by means of supplementary con-
ditions, while in inverse problems the equation itself is also unknown. The
determination of both the governing equation and its solution necessitates
imposing more additional conditions than in related direct problems.

The sources of the theory of inverse problems may be found late in the
19th century or early 20th century. They include the problem of equilibrium
figures for the rotating fluid, the kinematic problems in seismology, the
inverse Sturm-Liuville problem and more. Newton’s problem of discovering
forces making planets move in accordance with Kepler’s laws was one of the
first inverse problems in dynamics of mechanical systems solved in the past.
Inverse problems in potential theory in which it is required to determine
the body’s position, shape and density from available values of its potential
have a geophysical origin. Inverse problems of electromagnetic exploration
were caused by the necessity to elaborate the theory and methodology of
electromagnetic fields in investigations of the internal structure of Earth’s
crust.

The influence of inverse problems of recovering mathematical physics
equations, in which supplementary conditions help assign either the values
of solutions for fixed values of some or other arguments or the values of cer-
tain functionals of a solution, began to spread to more and more branches
as they gradually took on an important place in applied problems arising
in “real-life” situations. From a classical point of view, the problems under
consideration are, in general, ill-posed. A unified treatment and advanced
theory of ill-posed and conditionally well-posed problems are connected
with applications of various regularization methods to such problems in
mathematical physics. In many cases they include the subsidiary infor-
mation on the structure of the governing differential equation, the type of
its coefficients and other parameters. Quite often the unique solvability
of an inverse problem is ensured by the surplus information of this sort.
A definite structure of the differential equation coefficients leads to an in-
verse problem being well-posed from a common point of view. This book
treats the subject of such problems containing a sufficiently complete and
systematic theory of inverse problems and reflecting a rapid growth and

il
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development over recent years. It is based on the original works of the
authors and involves an experience of solving inverse problems in many
branches of mathematical physics: heat and mass transfer, elasticity the-
ory, potential theory, nuclear physics, hydrodynamics, etc. Despite a great
generality of the presented research, it is of a constructive nature and gives
the reader an understanding of relevant special cases as well as providing
one with insight into what is going on in general.

In mastering the challenges involved, the monograph incorporates the
well-known classical results for direct problems of mathematical physics
and the theory of differential equations in Banach spaces serving as a basis
for advanced classical theory of well-posed solvability of inverse problems
for the equations concerned. It is worth noting here that plenty of inverse
problems are intimately connected or equivalent to nonlocal direct problems
for differential equations of some combined type, the new problems arising
in momentum theory and the theory of approximation, the new types of
linear and nonlinear integral and integro-differential equations of the first
and second kinds. In such cases the well-posed solvability of inverse prob-
lem entails the new theorems on unique solvability for nonclassical direct
problems we have mentioned above. Also, the inverse problems under con-
sideration can be treated as problems from the theory of control of systems
with distributed or lumped parameters.

It may happen that the well-developed methods for solving inverse
problems permit one to establish, under certain constraints on the input
data, the property of having fixed sign for source functions, coefficients and
solutions themselves. If so, the inverse problems from control theory are
in principal difference with classical problems of this theory. These special
inverse problems from control theory could be more appropriately referred
to as problems of the “forecast-monitoring” type. The property of having
fixed sign for a solution of “forecast-monitoring” problems will be of crucial
importance in applications to practical problems of heat and mass transfer,
the theory of stochastic diffusion equations, mathematical economics, var-
ious problems of ecology, automata control and computerized tomography.
In many cases the well-posed solvability of inverse problems is established
with the aid of the contraction mapping principle, the Birkhoff-Tarsky
principle, the Newton-Kantorovich method and other effective operator
methods, making it possible to solve both linear and nonlinear problems
following constructive iterative procedures.

The monograph covers the basic types of equations: elliptic, parabolic
and hyperbolic. Special emphasis is given to the Navier-Stokes equations as
well as to the well-known kinetic equations: Bolzman equation and neutron
transport equation.

Being concerned with equations of parabolic type, one of the wide-
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spread inverse problems for such equations amounts to the problem of de-
termining an unknown function connected structurally with coefficients of
the governing equation. The traditional way of covering this is to absorb
some additional information on the behavior of a solution at a fixed point
u(zo,t) = ¢(t). In this regard, a reasonable interpretation of problems with
the overdetermination at a fixed point is approved. The main idea behind
this approach is connected with the control over physical processes for a
proper choice of parameters, making it possible to provide at this point a
required temperature regime. On the other hand, the integral overdeter-
mination
[ @ty u(@) do = o),
Q

where w and ¢ are the known functions and u is a solution of a given par-
abolic equation, may also be of help in achieving the final aim and comes
first in the body of the book. We have established the new results on
uniqueness and solvability. The overwhelming majority of the Russian and
foreign researchers dealt with such problems merely for linear and semi-
linear equations. In this book the solvability of the preceding problem is
revealed for a more general class of quasilinear equations. The approximate
methods for constructing solutions of inverse problems find a wide range
of applications and are gaining increasing popularity.

One more important inverse problem for parabolic equations is the
problem with the final overdetermination in which the subsidiary informa-
tion is the value of a solution at a fixed moment of time: u(z,T) = ¢(z).
Recent years have seen the publication of many works devoted to this
canonical problem. Plenty of interesting and profound results from the
explicit formulae for solutions in the simplest cases to various sufficient
conditions of the unique solvability have been derived for this inverse prob-
lem and gradually enriched the theory parallel with these achievements.
We offer and develop a new approach in this area based on properties of
Fredholm’s solvability of inverse problems, whose use permits us to estab-
lish the well-known conditions for unique solvability as well.

It is worth noting here that for the first time problems with the in-
tegral overdetermination for both parabolic and hyperbolic equations have
been completely posed and analysed within the Russian scientific school
headed by Prof. Aleksey Prilepko from the Moscow State University. Later
the relevant problems were extensively investigated by other researchers in-
cluding foreign ones. Additional information in such problems is provided
in the integral form and admits a physical interpretation as a result of mea-
suring a physical parameter by a perfect sensor. The essense of the matter
is that any sensor, due to its finite size, always performs some averaging of
a measured parameter over the domain of action.
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Similar problems for equations of hyperbolic type emerged in theory
and practice. They include symmetric hyperbolic systems of the first order,
the wave equation with variable coefficients and the system of equations
in elasticity theory. Some conditions for the existence and uniqueness of a
solution of problems with the overdetermination at a fixed point and the
integral overdetermination have been established.

Let us stress that under the conditions imposed above, problems with
the final overdetermination are of rather complicated forms than those in
the parabolic case. Simple examples help motivate in the general case the
absence of even Fredholm’s solvability of inverse problems of hyperbolic
type. Nevertheless, the authors have proved Fredholm’s solvability and
established various sufficient conditions for the existence and uniqueness of
a solution for a sufficiently broad class of equations.

Among inverse problems for elliptic equations we are much interested
in inverse problems of potential theory relating to the shape and density
of an attracting body either from available values of the body’s external or
internal potentials or from available values of certain functionals of these
potentials. In this direction we have proved the theorems on global unique-
ness and stability for solutions of the aforementioned problems. Moreover,
inverse problems of the simple layer potential and the total potential which
do arise in geophysics, cardiology and other areas are discussed. Inverse
problems for the Helmholz equation in acoustics and dispersion theory are
completely posed and investigated. For more general elliptic equations,
problems of finding their sources and coefficients are analysed in the situa-
tion when, in addition, some or other accompanying functionals of solutions
are specified as compared with related direct problems.

In spite of the fact that the time-dependent system of the Navier—
Stokes equations of the dynamics of viscous fluid falls within the category
of equations similar to parabolic ones, separate investigations are caused
by some specificity of its character. The well-founded choice of the inverse
problem statement owes a debt to the surplus information about a solu-
tion as supplementary to the initial and boundary conditions. Additional
information of this sort is capable of describing, as a rule, the indirect
manifestation of the liquid motion characteristics in question and admits
plenty of representations. The first careful analysis of an inverse prob-
lem for the Navier-Stokes equations was carried out by the authors and
provides proper guidelines for deeper study of inverse problems with the
overdetermination at a fixed point and the same of the final observation
conditions. This book covers fully the problem with a perfect sensor in-
volved, in which the subsidiary information is prescribed in the integral
form. Common settings of inverse problems for the Navier-Stokes system
are similar to parabolic and hyperbolic equations we have considered so
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far and may also be treated as control problems relating to viscous liquid
motion.

The linearized Bolzman equation and neutron transport equation are
viewed in the book as particular cases of kinetic equations. The linearized
Bolzman equation describes the evolution of a deviation of the distribution
function of a one-particle-rarefied gas from an equilibrium. The statements
of inverse problems remain unchanged including the Cauchy problem and
the boundary value problem in a bounded domain. The solution existence
and solvability are proved. The constraints imposed at the very beginning
are satisfied for solid sphere models and power potentials of the particle
interaction with angular cut off.

For a boundary value problem the conditions for the boundary data
reflect the following situations: the first is connected with the boundary
absorption, the second with the thermodynamic equilibrium of the bound-
ary with dissipative particles dispersion on the border. It is worth noting
that the characteristics of the boundary being an equilibria in thermody-
namics lead to supplementary problems for investigating inverse problems
with the final overdetermination, since in this case the linearized collision
operator has a nontrivial kernel. Because of this, we restrict ourselves to
the stiff interactions only.

Observe that in studying inverse problems for the Bolzman equa-
tion we employ the method of differential equations in a Banach space.
The same method i1s adopted for similar problems relating to the neutron
transport. Inverse problems for the transport equation are described by
inverse problems for a first order abstract differential equation in a Ba-
nach space. For this equation the theorems on existence and uniqueness
of the inverse problem solution are proved. Conditions for applications
of these theorems are easily formulated in terms of the input data of the
initial transport equation. The book provides a common setting of in-
verse problems which will be effectively used in the nuclear reactor the-
ory.

Differential equations in a Banach space with unbounded operator
coeflicients are given as one possible way of treating partial differential
equations. Inverse problems for equations in a Banach space correspond to
abstract forms of inverse problems for partial differential equations. The
method of differential equations in a Banach space for investigating various
inverse problems is quite applicable. Abstract inverse problems are consid-
ered for equations of first and second orders, capable of describing inverse
problems for partial differential equations.

It should be noted that we restrict ourselves here to abstract inverse
problems of two classes: inverse problems in which, in order to solve the
differential equation for wu(t), it is necessary to know the value of some
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operator or functional Bu(t) = ¢(t) as a function of the argument ¢, and
problems with pointwise overdetermination: (7)) = u,,..

For the inverse problems from the first class (problems with evolution
overdetermination) we raise the questions of existence and uniqueness of a
solution and receive definite answers. Special attention is being paid to the
problems in which the operator B possesses some smoothness properties.
In context of partial differential equations, abstract inverse problems are
suitable to problems with the integral overdetermination, that is, for the
problems in which the physical value measurement is carried out by a per-
fect sensor of finite size. For these problems the questions of existence and
uniqueness of strong and weak solutions are examined, and the conditions
of differentiability of solutions are established. Under such an approach the
emerging equations with constant and variable coefficients are studied.

It is worth emphasizing here that the type of equation plays a key
role in the case of equations with variable coefficients and, therefore, its
description is carried out separately for parabolic and hyperbolic cases.
Linear and semilinear equations arise in the hyperbolic case, while parabolic
equations include quasilinear ones as well. Semigroup theory is the basic
tool adopted in this book for the first order equations. Since the second
order equations may be reduced to the first order equations, we need the
relevant elements of the theory of cosine functions.

A systematic study of these problems is a new original trend initiated
and well-developed by the authors.

The inverse problems from the second class, from the point of pos-
sible applications, lead to problems with the final overdetermination. So
far they have been studied mainly for the simplest cases. The authors be-
gan their research in a young and growing field and continue with their
pupils and colleagues. The equations of first and second orders will be of
great interest, but we restrict ourselves here to the linear case only. For
second order equations the elliptic and hyperbolic cases are extensively in-
vestigated. Among the results obtained we point out sufficient conditions
of existence and uniqueness of a solution, necessary and sufficient condi-
tions for the existence of a solution and its uniqueness for equations with a
self-adjoint main part and Fredholm’s-type solvability conditions. For dif-
ferential equations in a Hilbert structure inverse problems are studied and
conditions of their solvability are established. All the results apply equally
well to inverse problems for mathematical physics equations, in particu-
lar, for parabolic equations, second order elliptic and hyperbolic equations,
the systems of Navier-Stokes and Maxwell equations, symmetric hyper-
bolic systems, the system of equations from elasticity theory, the Bolzman
equation and the neutron transport equation.

The overview of the results obtained and their relative comparison
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are given in concluding remarks. The book reviews the latest discoveries
of the new theory and opens the way to the wealth of applications that it

is likely to embrace.
In order to make the book accessible not only to specialists, but also

to students and engineers, we give a complete account of definitions and
notions and present a number of relevant topics from other branches of

mathematics.
It is to be hoped that the publication of this monograph will stimulate

further research in many countries as we face the challenge of the next
decade.

Aleksey I. Prilepko
Dmitry G. Orlovsky
Igor A. Vasin



