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Preface

This volume gives a general view of the main activities which took place
during the research semester “Group Representation Theory”, held in Lau-
sanne, Switzerland, from January to June, 2005. This program included five
graduate courses, two workshops, one conference, and numerous seminars. It
was hosted by the Bernoulli Centre of the Ecole Polytechnique Fédérale de
Lausanne (EPFL) and was funded jointly by EPFL and the Swiss National
Foundation.

The volume consists of a collection of independent contributions. There is
no aim at uniformity and the diversity of the styles reflects the individuality
of the authors. The level of exposition is intended for graduate students and
researchers in representation theory.

The first part of the semester was concerned with the interplay between the
representation theory of finite groups, cohomology, and topology. A one-week
workshop “Topology, representation theory, cohomology” was held in April
and its main purpose was to gather topologists and representation theorists
working on fusion systems and p-local finite groups. Two introductory papers
are published here on some of the algebraic aspects of the theory (a survey
on the topological aspects appears elsewhere). The first is an introduction to
fusion systems by M. Linckelmann and the second is a survey by R. Kessar of
the important case of blocks. Finally many developments in this area include
representations of categories and related cohomological methods, which are

presented here by P. J. Webb.

In this first part of the semester, J. F. Carlson gave a graduate course
entitled “Cohomology and representations of finite groups”, which is pub-
lished here. In addition, a small workshop on the recent classification of
endo-permutation modules for p-groups was held in April and a survey by
J. Thévenaz on this classification is included in this volume.

The second part of the semester was dedicated to algebraic groups and finite
reductive groups. The research areas of the participants covered wide-ranging
topics in the representation theory of algebraic and finite reductive groups and
Hecke algebras, as well as the interaction between the representation theory
and subgroup structure of semisimple algebraic groups. The program culmi-
nated in a one-week conference “Algebraic groups and reductive groups” held
in June. This volume contains an introduction to representations of algebraic
groups, which was presented by S. Donkin during a small workshop on alge-
braic groups in May. This workshop paved the way for several graduate courses:



vi Preface

“Representations of Hecke algebras™ by M. Geck, “Topics in algebraic groups”
by G. Seitz, “Finite reductive groups and spetses” by M. Broué, and last but
not least “On finite subgroups of Lie groups” by J.-P. Serre.

For all of these graduate courses. expanded notes were prepared by the
authors and are published here.

It is a pleasure to thank the Bernoulli Center and its staff for their dedicated
work during the program. We wish to thank as well all the participants who

contributed to the success of the semester and in particular the speakers who
agreed to write articles for this volume.

Meinolf Geck, Donna Testerman, and Jacques Thévenaz
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Cohomology and Representation Theory

JoN F. CARLSON'""

1. Introduction

In these lectures we shall consider a few aspects of the interaction between
group cohomology and group representation theory. That interaction has grown
tremendously in the last thirty years to the point that homological methods
are now standard in modular representation theory. The subject is much too
large to give a complete picture in the space of a half semester of lectures.
Consequently, we will concentrate on the methods and results required for one
application: the classification of endotrivial modules. The classification is a
statement about modules over group algebras and makes almost no mention of
homological algebra or cohomology. Yet its proof relies in fundamental ways on
the theory of support varieties, on the computations of the cohomology rings
of extraspecial groups and on several other items from group cohomology.

The endotrivial modules were introduced by Dade in [22], who showed them
to be the building blocks for the endopermutation modules. The endopermu-
tation modules are the sources for the simple module for p-solvable groups [28]
and are also of interest in block theory and categorical equivalences [14]. Dade
also proved a classification for the endotrivial modules for an abelian p-group.
Puig [29] showed that the group of endotrivial modules is finitely generated.
Following those beginnings there was a long period with no big progress. Then
in the middle 1990’s, Alperin [1] found the torsion free rank of the group of
endotrivial modules. Alperin’s result was proved independently by Bouc and
Thévenaz [10]. A few years later, Thévenaz and the author [15, 16, 17] char-
acterized the torsion part of the group and showed that Alperin’s generators,
indeed, generated the torsion free part. Another collection of generators was

“)Department of Mathematics, University of Georgia, Athens, Georgia 30602, USA
(jfc@math.uga.edu).
This research was supported in part by a grant from NSF.
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constructed in [13]. Very recently, Bouc [9] has used the classification of en-
dotrivial modules to complete a characterization of the Dade group of endop-
ermutation modules of a p-group. There has also been some progress made on
classifying the endotrivial modules for groups which are not p-groups [19].

A key point in the proof of the classification of endotrivial modules was
the development of an effective method of computing an upper bound for the
dimensions of endotrivial modules based on group cohomology. This method
relies on an explicit proof of Quillen’s Dimension Theorem in terms of the
vanishing of certain cohomology products. The proof first appeared in [12] and
we present some part of it in Section 5.

In the final section of the notes we present a proof of one piece of the
classification of the endotrivial modules. The theorem establishes the rank of
the torsion free part of the group of endotrivial modules. We use an entirely
different method from the proof given by Alperin [1]. Our proof is much more
representative of the type of techniques that were used in [16] and [17]. Some
other parts of the classification are sketched in other sections. For example,
near the end of Section 3 we show how to construct exotic endotrivial modules
for the quaternion group. This particular construction turned out to be a key
to the entire proof of the classification.

We have augmented the text of the notes with some exercises. Some of the
exercises are fairly difficult. Perhaps in a few cases, these should be considered
more to be pondered than to be solved.

In general we assume a basic knowledge of homological algebra and group
representations. The first two or three sections will cover foundational material
and be treated mostly as review. In the later sections we encounter some
theorems whose proofs, because of time constraints, will be omitted or only
sketched.

Throughout these notes, the symbol &k denotes a field of prime character-
istic p. In general, we assume that k is algebraically closed, though for many
of the theorems, this restriction is not necessary. All modules are left unital
modules unless stated otherwise. The tensor product @ means @j. The k-dual
of a kG-module or k-vector space M is denoted A*. All modules will be as-
sumed to be finitely generated. Recall that modules over a finite dimensional
algebra satisfy the Krull-Schmidt Theorem. That is, every (finitely generated)
module can be written uniquely (up to isomorphism and order of the factors)
as a direct sum of indecomposable modules.

For most of the basic material, no references are given. The results can be
found in one or all of the basic text books on the subject [6, 18, 24].

Acknowlegments: The author would like to thank the Centre Bernoulli and the
Ecole Polytechnique Fédérale de Lausanne for support and general help during
the period of these lectures.
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2. Modules over p-groups

In this section we explore the group algebras of p-groups and their repre-
sentations. All of the material in this section is standard and can be found
in almost any text that deals with modular representation theory. Some of
the results of the section hold for all finite groups and not just p-groups. The
reader who is unfamiliar with some of the material in this section is encouraged
to work through the exercises in some detail.

Throughout this section assume that G is a finite group. We specialize to
p-groups later in the section. First we need some basics on group algebras.

Hopf algebras, tensor products and duals

We have a Hopf algebra structure kG — kG x kG given on basis elements
by g — (g,g9). This means that if M and N are kG-modules, then so is
M ® N with the action of g € G defined by g(m @ n) = gm @ gn for m € M
and n € N. Likewise we make Homy (M, N) into a kG-module by letting
(gf)(m) = gf(g~'m) for all f € Homy(M,N) and m € M.

Exercise 2.1. Prove that M* @ N = Homg (M, N) by the map which sends
A@n to f where f(m) = Am)n forall A € M*, n € N and m € M. Show also
that the isomorphism is natural in both variables.

Exercise 2.2. Suppose that G = (x,y) is an elementary abelian group of order
4, and k has characteristic 2. Let M = M, be the kG-module of dimension 2
for which the actions of x and y are given by the matrices

‘}_)1() "_}l()
! 1 1)/)° Y o 1)°

for some element o € k and some basis {mi,m2} of M. Find a decomposition
of M ® M into a direct sum of indecomposable modules. Do the same for
M, @ Msz where «v and /3 are different elements of k.

Symmetric and self-injective algebras

Let ¢ : kG — k be the k-vector space homomorphism defined by
(> ay-g) = a. That is, o applied to an element of kG returns the coefficient
on the identity element of G. Define a nondegenerate symmetric bilinear form
(. ): kG x kG — k by the rule (a.3) = o(a - 3). Nondegenerate means
that if (o, 3) = 0 for all 3 or if (3, ) = 0 for all 3, then o« = 0. It can be seen
that the form is G-invariant in the sense that (ag, 3) = (a, gf3) for all g € G,
«, 3 € kG, The form proves that kG is a symmetric algebra. That is, there is
an isomorphism ¢ : kG = EG* given by ¢(«) = (a, ). A consequence of this is
the following:

Theorem 2.3. The group algebra kG is a self-injective algebra. That is, every
finitely generated projective module is injective, and conversely, every finitely
generated injective module is projective.

Exercise 2.4. Prove the theorem. Show first that finitely generated free mod-
ules are injective using the duality.
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Module categories

We let mod(kG) denote the category of finitely generated kG-modules. Let
stmod(kG) denote the stable category of kG-modules modulo projectives. The
objects in stmod(kG) are the same as those in mod(kG), but the morphisms
from modules M to N are given by

Hom, (M, N) = Homyg(M,N)/PHomyq(M,N),

where PHomy (M, N) is the set of all homomorphisms from M to N that
factor through a projective module. We say that o : M — N factors through
a projective module if there exist a projective module P and maps yt: M — P
and v : P — N such that vp = a.

Induction and Frobenius reciprocity

Suppose that H is a subgroup of G. If M is a kG-module, we let My
denote the restriction of M to a kH-module. If some emphasis is required we
use the symbol M|y to denote the restriction. If N is a kH-module, then the
induced module N'¢ = kG ®,g N is a kG-module with the action of G on
the left. Both restriction and induction are functors on the module categories.
There are two results relating induction and restriction that are very useful to
us. The first is known as Frobenius Reciprocity.

Theorem 2.5. Let M be a kG-module and N a kH-module. Then
M®N'¢ =~ (My @ N)1C.

The isomorphism is given by the map m @ (g ® n) — g ® (¢~ 'm @ n)
for all g € G, m € M and n € N. In the other direction, the map sends
gR(MmRn)—gm®(gRn).

The other result is known as the Mackey formula.

Theorem 2.6. Suppose that M is a finitely generated kH-module for H a
subgroup of G. Let K be another subgroup of G. Then

(M) 2> (2@ M) grame-) = D (2® My-1geonm) '™,
KzH KzH
where the sum is indexed by the K — H-double cosets in G.

Now notice that if H = {1}, the identity subgroup, and if ky is the trivial
kH-module, then k;,c > kG as left kG-modules. A consequence of this and
Frobenius Reciprocity is the following.

Exercise 2.7. Suppose that P is a projective kG-module and that M is any
kG-module. Prove that M ® P is projective.
Degree shifting

The notation and ideas of this section are vital for the rest of the course.
First we recall Schanuel’s Lemma.
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Proposition 2.8. Let R be a ring and let M be an R-module. Suppose that
Py and P, are projective modules and that 61 : Py — M, 03 : P» — M
are surjective homomorphisms. Let K; be the kernel of 0; for i = 1,2. Then
KioP=2Kyd Py

If M is a finitely generated kG-module, then there exists a finitely gen-
erated projective cover § : P — M. That is, P is a projective module of
least dimension such that there is a surjective homomorphism (theta) onto
M. We denote the kernel of § by Q(M). Notice that Q(M) has no projec-
tive submodule, because if @ were a projective submodule of Q(M), then @
would be a projective and also injective submodule of P. Hence, @ would be
a direct summand of P, thus contradicting the minimality of P. Moreover,
Q(M) is uniquely defined in the sense that if v : Q@ — M is any surjective
homomorphism with @ projective, then by Schanuel’s Lemma the kernel of v is
Q(M) @ (proj), where by @ (proj) we mean the direct sum with some projective
module.

Inductively, we define, Q"(M) = Q(Q""'(M)) for all natural numbers
n > 1. For the reasons given, Q"(M) is well defined up to isomorphism. The
module M has an injective hull given by 6 : M — @Q where @ is a smallest
injective (projective) module into which M injects. Then the cokernel of 6 is
denoted Q~1(M) and has no injective (hence projective) submodules. Iterating,
we define Q" (M) = Q=1 (Q"H(M)) for n > 0. We let Q°(M) be the non-
projective part of M, the direct sum of all of the nonprojective indecomposable
summands of M.

With the above definitions and some facts that we know about projective
modules, we can prove the following very useful result.
Exercise 2.9. Suppose that M and N are kG-modules and m and n are any
integers. Then
(i) Q™(M) ®@ Q"(N) 2 Q™" (M ® N) & (proj), and
(i) (Q™(M))* =2 Q" (M*).
Definition 2.10. A kG-module is an endotrivial module if its k-endomorphism

ring is the direct sum of a trivial module and a projective module. That is, M
is endotrivial if and only if

Homu(M, M) = M* @ M = k& (proj).

The previous exercise shows that for any integer n, (k) is an endotrivial
module.

Group algebras of p-groups

Suppose now that G is a p-group. Note that if 2 € G, then (z — 1)P" =
zP" — 1 = 0, provided p" is the order of x. Consequently, the augmentation
ideal I(kG) of kG, the ideal generated by all z — 1 for z in G, is generated by
nilpotent elements. Slightly harder to prove is the following.



