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Preface

Linear algebra is a well-entrenched mathematical subject that is taught
in virtually every undergraduate program in both the sciences and engi-
neering. Over the years, many texts have been written on linear algebra,
therefore, it is up to the author to justify the presentation of another book
in this area to the public.

I feel that my justification for the writing of this book is based on a
different choice of material and a different approach to the classical core of
linear algebra. The main innovation in it is the emphasis placed on func-
tional models and polynomial algebra as the best vehicle for the analysis of
linear transformations and quadratic forms. In pursuing this innovation, a
long-lasting trend in mathematics is being reversed. Modern algebra went
from the specific to the general, abstracting the underlying unifying con-
cepts and structures. The epitome of this trend was represented by the
Bourbaki school. No doubt this was an important part in the development
of modern mathematics, but it had its faults, too. It led to several gener-
ations of students who could not compute, nor could they give interesting
examples of theorems they proved. Even worse, it increased the gap between
pure mathematics and the general user of mathematics. It is the last group,
which is made up of engineers and applied mathematicians, that is inter-
ested not only in understanding a problem, but also in its computational
aspects. A very similar development occurred in functional analysis and
operator theory. Initially, the axiomatization of Banach and Hilbert spaces
led to a search for general methods and results. Although there were some
significant successes in these directions, it soon became apparent, especially
when trying to understand the structure of bounded operators, that one



viii Preface

has to be much more specific. In particular, the introduction of functional
models, through the work of Livsic, De Branges, Sz.-Nagy, and Foias, pro-
vided a new approach to structure theory. It is these ideas that I have taken
as my motivation in the writing of this book.

In the present book, at least where the structure theory is concerned,
we look at a special class of shift operators. These are defined by using
polynomial modular arithmetic. The interesting fact about this class is its
property of universality, in the sense that every cyclic operator is similar
to a shift and every linear operator on a finite-dimensional vector space is
similar to a direct sum of shifts. Thus, the shifts are the building blocks of
an arbitrary linear operator.

Basically, the approach taken in this book is a variation on the study
of a linear transformation via the study of the module structure induced
by it over the ring of polynomials. While module theory provides great
elegance, it is also difficult to grasp by students. Furthermore, it seems too
far removed from computation. Matrix theory seems to be at the other
extreme; it is concerned too much with computation and not enough with
structure. Functional models, especially the polynomial models, lie on an
intermediate level of abstraction between module theory and matrix theory.

The book includes specific chapters devoted to quadratic forms and the
establishments of algebraic stability criteria. The emphasis is shared be-
tween the general theory and the specific examples, which are in this case
the study of the Hankel and Bezout forms. This general area, via the work
of Hermite, is one of the roots of the theory of Hilbert spaces. I feel that
it is most illuminating to see the Euclidean algorithm and the associated
Bezout identity not as isolated results, but as an extremely effective tool
in the development of fast inversion algorithms for structured matrices.

Another innovation in this book is the inclusion of basic system-theoretic
ideas. It is my conviction that it no longer is possible to separate in a natural
way the study of linear algebra from the study of linear systems. The
two topics have benefited greatly from cross-fertilization. In particular, the
theory of finite-dimensional linear systems seems to provide an unending
flow of problems, ideas, and concepts that are quickly assimilated in linear
algebra. Realization theory is as much a part of linear algebra as is the long
familiar companion matrix.

The inclusion of a whole chapter on Hankel norm approximation theory,
or AAK theory as it is commonly known, is also a new addition as far
as linear algebra books are concerned. This part requires very little math-
ematical knowledge not covered in the book, but a certain mathematical
maturity is assumed. I believe that it is very much within the grasp of a well-
motivated undergraduate. In this part, several results from early chapters
are reconstructed in a context where stability is central. Thus, the rational
Hardy spaces enter, and we have analytic models and shifts. Lagrange and
Hermite interpolations are replaced by the Nevanlinna—Pick interpolation.
Finally, coprimeness and the Bezout identity reappear, but over a different
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ring. I believe that the study of these analogies goes a long way toward
demonstrating to the student the underlying unity of mathematics.

Let me explain the philosophy that underlies the writing of this book.
In a way I share the aim of Halmos [1958] in trying to treat linear trans-
formations on finite-dimensional vector spaces by methods of more general
theories. These theories were functional analysis and operator theory in
Hilbert space; this is still the case in this book. However, in the intervening
years, operator theory has changed remarkably. The emphasis has moved
from the study of self-adjoint and normal operators to the study of non-
self-adjoint operators. The hope that a general structure theory for linear
operators might be developed seems to be too naive. The methods utilizing
Riesz—Dunford integrals proved to be too restrictive. On the other hand,
a whole new area centering around the theory of invariant subspaces, and
the construction and study of functional models, was developed. This new
development had its roots not only in pure mathematics, but also in many
applied areas, notably scattering, network, control theories, and some areas
of stochastic processes as estimation and prediction theories.

I hope that this book will show how linear algebra is related to other,
more advanced areas of mathematics. Polynomial models have their root
in operator theory, especially that part of operator theory that centered
around invariant subspace theory and Hardy spaces. Thus, the point of
view adopted here provides a natural link with that area of mathematics,
as well as those application areas I have already mentioned.

In writing this book, I chose to work almost exclusively with scalar poly-
nomials, the one exception being the invariant factor algorithm and its
application to structure theory. My choice was influenced by the desire
to have the book accessible to most undergraduates. Virtually all results
about scalar polynomial models have polynomial matrix generalizations,
and some of the appropriate references are pointed out in the “Notes and
Remarks” sections.

The exercises at the end of chapters have been chosen partly to indicate
directions not covered in the book. I have refrained from including routine
computational problems. This does not indicate a negative attitude toward
computation. Quite to the contrary, I am a great believer in the exercise
of computation, and I suggest that readers choose, and work out, their
own problems. This is the best way to get a better grasp of the presented
material.

I usually use the first seven chapters for a one-year course on linear
algebra at the Ben-Gurion University. If the group is a bit more advanced,
one can supplement this by more material on quadratic forms. The material
on quadratic forms and stability can be used as a one-semester course of
special topics in linear algebra. Also, the material on linear systems and
Hankel norm approximations can be used as a basis for either a one-term
course or a seminar.

Beer Sheva, Israel Paul A. Fuhrmann
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1

Preliminaries

1.1 Maps

Let S be a set. If between elements of the set a relation a ~ b is defined, so
that either a ~ b holds or not, then we say that we have a binary relation.
If a binary relation in S satisfies the following conditions:

1. a~a holds for all a € S,
2. a~b<b~a,
. a~bandb~c<a~c,

then we say that we have an equivalence relation in S. The three condi-
tions are referred to as reflexivity, symmetry, and transitivity, respec-
tively.

For each a € S we define its equivalence class S, by S, = {z € S|z ~ a}.
Clearly, S, C S and S, # 0.

An equivalence relation leads to a “partition” of the set S. By a partition
of S we mean a representation of S as the disjoint union of subsets. Since,
clearly, using transitivity, either S, NS, =0 or S, = Sp, and S = U,es5S,,
the set of equivalence classes is a partition of S.

Similarly, any partition S = U,S, defines an equivalence relation by
letting a ~ b if for some a we have a,b € S,,.

A rule that assigns to each member a € A a unique member b € B
is called a map or a function from A into B. We will denote this by

f:A—Boa AL B
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We denote by f(A) the image of the set A defined by f(A) = {yly € B,
there exists an z € A s.t. y = f(z)}. The inverse image of a subset M C B
is defined by f~1(M) = {z|z € A, f(z) € M}. Amap f: A — B'is
called injective, or 1-1, if f(z) = f(y) impliesz =y. Amap f: A— B
is called surjective, or onto, if f(A) = B, for example, for each y € B
there exists an € A such that y = f(x).

Given maps f : A — B and g : B — C, we can define a map h :
A — C by letting h(z) = g(f(x)). We call this map h the composition
or product of the maps f and g. This will be denoted by h = go f. Given

three maps A f.p- 9, c-L D, we compute

ho(ge f)(z) = h(g(f(x)))

and
(hog)o f(z) = h(g(f(z)))-

So the product of maps is associative, that is,
ho(go f)=(hog)of.

Due to the associative law of composition, we can write ho go f and, more
generally, f, o---o f1, unambiguously.

Given a map f : A — B, we define an equivalence relation R in A by
letting

1 ~ 2o & f(z1) = f(z2).

Thus the equivalence class of a is given by A, = {z|z € A, f(z) = f(a)}.
We will denote by A/R the set of equivalence classes and refer to this as
the quotient set by the equivalence relation.

Next we define three transformations,

AT AR j(4) Lo B,
with the f; defined by

file) = A,
f2(Aa) = f(a)
f3(b) = b, be f(A).

Clearly the map f; is surjective, f; is bijective, and f3 is injective. Moreover,
we have

f=1fzofa0fr.

This factorization of f is referred to as the canonical factorization. The
canonical factorization also can be described via the following commutative
diagram:
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A/R f(4)

We note that f; o f is surjective whereas f3 o f; is injective.

1.2 Groups

Given a set M, a binary operation is a map from M x M into M. Thus
an ordered pair (a,b) is mapped into an element of M denoted by ab.

A set M with an associative binary operation is called a semigroup.
Thus, if a,b € M, we have ab € M and the associative rule is a(bc) = (ab)c.
Thus the product a; - - - a,, of elements of M is unambiguously defined.

We proceed to define the notion of a group, which is the cornerstone of
most mathematical structures.

Definition 1.2.1 A group is a set G with a binary operation, called mul-
tiplication, that satisfies

1. a(bc) = (ab)c, that is, the associative law.
2. There exists a left identity e € G, that is, ea = a for all a € G.

3. For each a € G there exists a left inverse, denoted by a™!, that satis-
fiesa la =e.

4. A group G is called abelian if the group operation is commutative,
that is, if ab = ba holds for all a,b € G.

Theorem 1.2.1

1. Let G be a group and let a be an element of G. Then a left inverse
a1 of a is also a right inverse.

2. A left identity is also a right identity.

3. The identity element of a group is unique.
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Proof:
1. We compute

(@ Hla"laa ! = ((a71)ta ) (aa™t) = e(aa™?)
=aa'=(a D) Yata)at=(a ) ea ) =(at)tat =e.
1 =

So, in particular, aa™ e.

2. Let a € G be arbitrary and let e be a left identity. Then

1

ac'a=a(a"'a) = ae = (aa ')a = ea = a.

Thus ae = a for all a. So e is also a right identity.

3. Let e, €' be two identities in G. Then, using the fact that e is a left
identity and €’ a right identity, we get

e=ece' =¢. O

In a group G, equations of the type axb = c are easily solvable with the
solution given by z = a~!cb~1. Also, it is easily checked that we have the
following rule for inversion:

(al 4 @ .an)_l e aT_L]‘ S5 afl_
Definition 1.2.2 A subset H of a group G is called a subgroup of G
if it is a group with the composition rule inherited from G. Thus H is a
subgroup if, with a,b € H, we have abc H anda™! € H.

This can be made a bit more concise.

Lemma 1.2.1 A subset H of a group G is a subgroup if and only if, with
a,bc H, ab~! € H also.

Proof: If H is a subgroup, then with a,b € H it also contains b~ and
hence also ab™!.

Conversely, if a,b € H implies ab~! € H, then b ! = eb™! € H and
hence also ab=a(b~!)"' € H, a,b € H. O

Given a subgroup H of a group G, we say that two elements a,b € G
are equivalent, and we write a ~ b if b=1a € H. It is easily checked
that this is a bona fide equivalence relation in G, that is, it is a reflexive,
symmetric, and transitive relation. We denote by M, the equivalence class
of a, that is,

M, = {z|z € G,z ~ a}.

If we denote by aH the set {z|ah,h € H}, then M, = aH. We will refer to
these as right equivalence classes or as right cosets. Left equivalence
classes or left cosets Ha are defined in a completely analogous way.



