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Preface

This book is intended to be an intermediate level text on Tinear
electrical network theory. It assumes that the student has already had
a basic course in d.c. and steady-state a.c. analysis and is familiar
with the basic network theorems and laws. The bulk of the material has
been given for a number of years as a one-term subject at the second-
year level of a three-year degree course. It is hoped that the student
will gain from this book the necessary foundation in network analysis to
follow advanced courses on analysis and synthesis.

The first chapter defines the scope of the book and reviews some
important fundamental network laws and theorems. I also consider an
elementary treatment of network topology useful in so far as it enables
the student to determine the essential structure of a network and hence
to choose an approach to network analysis that results in the minimum
number of equations to solve. The next two chapters discuss the methods
of Toop and nodal analysis and the application of signal flow graphs in
network analysis. Chapters 4 and 5 are concerned with developing various
methods for characterizing signals. In chapter 4, time series description
and frequency domain description of signals via the Fourier series and
Fourier transform are discussed. The more versatile Laplace transform is
introduced in chapter 5 and its application in the study of the transient
and steady-state response of networks is treated in chapter 6. In this
chapter we also look at the important aspect of network stability and
develop simple criteria for stability of a Tinear network. This is
discussed with reference to feedback systems and oscillators. The
concept of a transfer function to describe a two-terminal pair or two-
port network is also introduced here as a ratio of the Laplace transforms
of the response and the input. Its lTimitations lead us to study the
more useful parametric description of two-port networks in chapter 7.

Worked examples are used to help the student understand new concepts,
and these are supplemented by a range of problems at the end of each
chapter. In this connection, I am indebted to the University of Warwick
for permission to use questions from the second-year examination papers



of their Bachelor of Science course.

I wish to acknowledge the invaluable help of Dr. R.K.L. Gay of the
University of Singapore who reviewed the manuscript and offered helpful
criticisms and useful suggestions for improvement of the presentation.
Particular thanks.is due to Mrs Pady Goh who typed the manuscript.
Finally I wish to express appreciation to my wife who showed much
patience and gave much enco.ragement during the many hours of manuscript
writing.

K. C. NG
Singapore
December 1974
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1 Electrical Networks

Introduction

An electrical system is an interconnection of electrical elements which
may vary in complexity from the very simple resistor-capacitor filter to
the electrical power distribution network of a state or country. Usually
a system is activated by some sort of external stimuli or signals which
we shall call inputs or excitations. In response to these excitations,
the system will perform certain functions and meet specific objectives

in the form of responses or outputs. This general situation is depicted
in Fig. 1.1 where only one input and one output are shown. In general
the system may have more than one input and one output.

Excitation System Response
or
network

(Input) (Output)

Fig.1.1 Excitation-response relationship

An electrical system will be a network of physical elements such as
resistors, inductors, capacitors, sources of electrical energy and other
devices such as valves, transistors, diodes. Henceforth, in this book
the terms system and network will be used interchangeably. To be able
to begin to understand the function of a complex system, we have to
understand first the input-output relationships of the component parts
and the interaction between these parts when connected together. Now
all physical elements are nonlinear to a greater or lesser extent. The
response of nonlinear elements to excitations is dependent on the
magnitude of the excitations, so that no useful general conclusions can
be made of their behaviour in response to excitations. Fortunately in
the majority of cases we find that either the nonlinear nature of the
element is not too pronounced or the signal levels are low or appreciably
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constant. In these circumstances a linear approximation generally yields
analytical results which are in close agreement with the observed behaviour.
It is for this reason that Tinear systems theory is so useful a discipline
to master. We assume in this book that the reader is already familiar with
the characteristic behaviour of linear resistors, capacitors, inductors and
sources and with elementary a.c. and d.c. network theory,although we shall
review some of the basic theorems of linear networks later in this chapter.

In the study of electrical networks we can distinguish between two broad
classes of problems. In the first category we are concerned with
determining the response, given the excitation and the network. This is
network analysis. One part of the analysis problem is the characterization
of the excitation and response signals. For electrical networks these
signals are voltages and currents which are functions of, and can be describe
in terms of, time t. However, the signals can be described equally well
in terms of spectral or frequency information. The other part of the
analysis problem is the characterization of the network itself in terms
of time and frequency and the determination of the behaviour of the network
as a signal processor.

The second class of network problems is the converse of the analysis
problem. In network synthesis, we are concerned with the design of a
network which will give the desired response to a specific excitation
signal. This is generally more difficult than network analysis. A given
linear network has anunique input-output relationship. However, a given
input-output relationship generally can be satisfied by more than one
network. For example, the two networks in Fig. 1.2 have the same input
(current)-response (voltage) relationship

2 .
dv dv _ di .
;2' + 4 at + 3v = I + 21

From a theoretical point of view, either of these two networks would be
acceptable. Physical constraints and considerations of availability of
components may be deciding factors in the choice of the design.

It is not intended in a book of this size to consider network synthesis
and the reader is referred to the many excellent introductory books on
network synthesis (see, for example, Guillemin, Kuo and Van Valkenburg in
the Bibliography). We shall deal only with the analysis of linear time-
invariant causal networks assumed to be made up of ideal elements. We
now go on to describe the general properties of this type of network.
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Fig.1.2 Two networkswith the same input-response
relationship

1.2 Basic Definitions

Linearity A system is linear if it obeys the following laws.

(i) Additivity. The response to a sum of independent excitations is
equal to the sum of the responses due to each of these excitations acting
alone, the other excitations being suppressed.

In other words, if the response to the ith exc1tat1on E is a; E
then the total response to the sum of n excitations Z E may be wr1tten

- i=1

R=7% aiE. (1.1)

i=1

where the ai's are constants determined by the network. This property is
commonly known as the superposition theorem.

(i11) Homogeneity. The principle of homogeneity or proportionality states
that if the excitation is multiplied by a constant, the response is also
multiplied by the same constant. This result follows naturally from the
superposition theorem.



(ii1) 4ssociativity. Consider the three networks A, B, and C in Fig.1.3(a).
Let the response of these networks to the excitations Ea’ Eb and EC be aEa,
bEb, cEC respectively. If the responses of networks A and B are additively
applied to network C as shown in Fig.1.3(b), then by the associative law
the response of network C is

R = c(aEa + bEb)

= acEa + bch
E, ak,
-— ] A e ———
Eg bEb
-— B - (a)
E. CEc
-_— C F—
Ea
% (b)
R
C pr————
Es
—-—— B

Fig.1.3 The Associativity law

Time Invariance. A time-invariant network is one whose characteristics

do not change with time. Suppose an excitation e(t) applied to a network
at t = 0 produces a response r(t). If the network is time-invariant,

then when the same excitation is applied at any other time tl, the response
will still be of the same waveshape but delayed in time by tl. This is

4



illustrated clearly in Fig.1.4. We should note here that a Tinear system
need not be time-invariant.

e(t) e(t)

0 t 0 t t
r(t) r(t) .

0] t 0 t t

Fig.1.4 Responses of a time-invariant system

Causality. A network is described as causal if its response to an
excitation is zero until after the excitation is applied. That is, for
a causal network, if

e(t)
then r(t)

0 t< T
0 T

as shown in Fig. 1.5. A causal network is therefore nonpredictive. All

e(t) e(t)
Y T t ol T t
(a) (b)
r(t) r(t)
! E
(0] T t 0 T t

Fig.1.5 (a) Response of a causal system (b) Response of a noncausal system
5



networks made up of physical elements (that is, physically realizable
networks) are causal. The concept of causality is therefore of fundamental
importance in the study of network synthesis. We cannot synthesize
networks which are specified by noncausal input-response relationships.

Passive Networks. A network that does not contain a source of electrical

energy is passive. An active network will have at least one energy source
in it. We shall be considering both types of networks in this book. The
two sources of electrical energy are the voltage source and the current
source. It is useful to distinguish between an Zideal and a practical
source. We can further classify the sources as dependent or independent.
An ideal current source is a source of energy capable of delivering any
amount of electrical energy at constant current. This implies that the
internal impedance of an ideal current source is infinite, so that the
current it delivers to an external load impedance is independent of the
magnitude of the load impedance. A practical current source, however,
will have a large but finite internal impedance z ,so that the current
delivered to the external load is now dependent on the load. The circuit
symbols for an ideal current source and a practical one are shown in
Fig. 1.6.

O \ 4 O

(a) (b)

Fig.1.6 (a) Ideal current source (b) Practical current source

An ideal voltage source is defined as a source which can delivery any
amount of electrical energy at constant voltage. This implies that it
has zero internal impedance. A physical voltage source, on the other
hand, has a small but finite internal impedance zg:so that as current
is drawn from the source the terminal voltage of the source falls. The
circuit symbols for these sources are shown in Fig. 1.7.



(a) (b)
Fig.1.7 (a) Ideal voltage source (b) Practical voltage source

The sources described above are independent sources,in that the source
voltage E and the source current I are independent of the voltages and
currents in the network in which they exist. In the case of dependent
sources, the source voltage or current is a function of voltages or
currents that appear at another part of the network. Typical examples
are illustrated in Fig. 1.8. Such sources are generally used to represent

o . ’e}
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— |
O— —! o
, (a)
i
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|
|
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|
|
|
- |
O J —0

(b)

Fig.1.8 1Illustration of dependent sources

active devices: transistors, valves and amplifiers, for example.



1.3 Basic Network Theorems

In this section we consider four network theorms which are of fundamental
importance in network theory. We assume that the reader has been exposed
to Kirchhoff's Laws, but discuss these briefly for the prime purpose of
laying down the convention of signs which will be followed throughout this
book. Kirchhoff's voltage and current laws are the basic network theorems
which govern the interconnection of electrical elements to form networks
and on which depend basic analytical methods, such as loop and nodal
analyses. The equations necessary to describe a network can always be
found by the appropriate application of these two laws. Thévenin's
theorem and Norton's theorem express the conditions of equivalence between
networks and will be found to be useful in deriving equivalent networks

of complex networks and for transforming voltage sources into their
equivalent current sources and vice versa.

1.3.2 Kirchhoff's Current and Voltage Laws

Kirchhoff's Current Law. By the continuity principle, all the currents

entering a junction point in a network must leave instantaneously. In
other words, the algebraic sum of the currents at the junction will be
zero; that is

i = 0 (1.2)
In applying this equation, we shall use the following sign convention:
Assign a positive sign to each current leaving the junction point and

a negative sign to each current entering the point.
Therefore, in Fig. 1.9 we have

Fig.1.9 Kirchhoff's current law



