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Preface

The ISFMA Symposium “Multiscale Problems: Theory, Numerical
Approximation and Applications” was held in May, 4-16, 2009 at Fudan
University in Shanghai. Its aim was to introduce graduate students
and post-doctors to the newest developments related to the analysis of
problems in which several scales are presented.

This volume gathers the notes corresponding to the lectures given
by the following professors: Alain Damlamian (Laboratoire d’Analyse et
Mathématiques Appliquées, Université Paris-Est, Paris12-Val de Marne,
France), Gabriel Nguetseng (Department of Mathematics, University of
Yaounde 1, Cameroon), Georges Griso (Laboratoire d’Analyse Numéri-
que J.L. Lions, Université P. et M. Curie, Paris, France), Patrizia Donato
(Université de Rouen, St Etienne du Rouvray, France), Dominique Blan-
chard (Université de Rouen, Saint Etienne du Rouvray, France), Bern-
adette Miara (Département de Modélisation et Simulation N umérique,
Université Paris-Est, Ecole Supérieure d’Ingénieurs en Electronique et
Electrotechnique, Noisy-le-Grand, France) and Assyr Abdulle (Section
of Mathematics, Swiss Federal Institute of Technology, Switzerland).

The contributions listed below cover a wide range of topics in theory,
numerical approximation with finite elements and applications in the
fields of elasticity and fluid mechanics.

Chapter 1, by Alain Damlamian, presents a general introduction to
the theory of homogenization in the periodic case. '

Chapter 2, by Alain Damlamian, is on the periodic unfolding method,
a very efficient and recent method for periodic homogenization.

Chapter 3, by Gabriel Nguetseng and Lazarus Signing, presents the
homogenization of the stationary Navier-Stokes equations in fixed or
variable domains occupied by porous media.

Chapter 4, by Patricia Donato, concerns the homogenization of a
class of imperfect transmission problems.

Chapters 5 and 6, by Georges Griso, present a new approach to the
decomposition of displacements in the case of thin structures (chapter
5) and rods with applications to the asymptotic behavior of nonlinear
elastic rods (chapter 6).

Chapter 7, by Dominique Blanchard, concerns the elastic behavior
for the junction of a periodic family of rods with a plate as the limit of
a 3D elastic body.



vi Preface

Chapter 8, by Bernadette Miara, presents the theory and numerical
simulation for the multi-scale modelling of new composites.

Chapter 9, by Assyr Abdulle, is a presentation and analysis of het-
erogeneous multiscale finite element methods (HMFEM); the a priori
and a posteriori analysis of such numerical methods is investigated and
a general framework to perform such analysis is given.

We are very grateful to our colleagues who carefully prepared the
paper version of their talks. It is also our pleasure to thank Ms. Zhou
Chunlian whose kindness and professionalism guarantied the success of
this Symposium.

We thank the Mathematical Center of Ministry of Education of China,
the National Natural Science Foundation of China, the School of Math-
ematical Sciences, Fudan University, Shanghai Key Laboratory for Con-
temporary Applied Mathematics, the Research Center of Scientific Com-
puting and Engineering and the Nonlinear Mathematical Modeling and
Methods Laboratory, which sponsored the Symposium.

Finally, the editors would like to express their gratitude to Fudan
University and the “Institut Sino-Francais de Mathématiques Appliquées”
(ISFMA) for their help and support.

Alain Damlamian, Bernadette Miara, Tatsien Li

January 2011
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An Introduction to Periodic
Homogenization

Alain Damlamian
Laboratoire d’Analyse et Mathématiques Appliquées
Université Paris-Est (Paris12-Val de Marne)
94010 Créteil Cedex, France
E-mail: damla@univ-paris12.fr

Abstract

The purpose of this series of lectures is to give a short intro-
duction to the theory of Homogenization in the case of periodic
problems. The main questions addressed by periodic homoge-
nization are presented and the three “classical” tools are briefly
explained. They serve as a general introduction for the various
lectures given during the ISFMA Symposium “Multiscale Prob-
lems: Theory, Numerical Approximation and Applications”.

1 Introduction

The mathematical theory of the homogenization was introduced in the
late 1970’s in order to describe the behaviour of composite materials and
reticulated structures.

Composite materials have been used for a long time (for example,
concrete is a composite material), and already back in the 1930’s, their
equivalent coefficients were studied, see for example [4]). But starting in
the 1970’s, new types of composites were introduced, and their manu-
facture became easier and more common. They were used for advanced
technologies, and the design of these new composites became itself a
high tech process. Today, they are used more and more in industry due
to the enhanced properties they exhibit when properly manufactured.
This phenomenon was examplified here in Shanghai at “The 6th China
(Shanghai) Glass Fiber Composite Material Expo 2009”, which took
place at the Shanghai Everbright Convention & Exhibition Center on
May 13, 14 and 15, 2009, during the time this ISFMA Symposium was
held (see http://www.fiberglassexpo.cn).

Composite materials are characterized by the fact that they con-
tain several finely mixed constituents in a structured way. They are
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designed to have a “better” behaviour than the average behaviour of its
constituents. Well-known examples are the superconducting multifila-
mentary composites which are used in the composition of optical fibers,
or the composite used in the aviation industry.

Generally speaking, the heterogeneities in a composite are small com-
pared to the global dimensions. So, several scales are needed to describe
such a material, one macroscopic scale, describing the global behaviour
of the composite, and at least one microscopic scales describing the het-
erogeneities in the material. From the macroscopic point of view, the
composite looks like a “homogeneous” material. The aim of “Homog-
enization Theory” is to give the precise macroscopic properties of the
composite by taking into account the properties of the microscopic struc-
ture.

The classical model case, which we will consider throughout these
lectures is the problem of the steady heat conduction in an isotropic
composite. It has the advantages of being simple to explain, of being in
scalar form, while presenting all the main complexities of the theory.

Consider first a homogeneous body occupying a physical domain 2
with thermal conductivity . For simplicity, assume that the material
is isotropic, which means that - is a scalar. Suppose that f represents
the heat source and g the temperature on the surface 92 of the body,
which, for simplicity, we can assume to be equal to zero.

Then the temperature v = u(z) at the point z €  satisfies the
following homogeneous Dirichlet problem

—div(yVu(z)) = f(z) inQ,
{ u=0 on 99, (1)

where Vu denotes the gradient of u defined by

ou ou
Vu = (6—1:1”%)

Since 7 is constant, this can be rewritten in the form

—yAu = f in Q,
{uzO on 0%, (1.2)

where Au = div(grad u). The flux of the temperature is defined by
g = grad u. (1.3)

This is a classical elliptic boundary value problem and it is well-
known that if f is sufficiently smooth, it admits a unique solution u

which is twice differentiable and solves system (1.2) at every point z of
Q.



An Introduction to Periodic Homogenization 3

If now we consider a heterogeneous material occupying €2, the thermal
conductivity takes different valpes in each component of the composite.
Hence, ~ is now a function, which is discontinuous in €2, since it jumps
over surfaces which separate the constituents. To simplify, suppose we
are in presence of a mixture of two materials, one occupying the subdo-
main ; and the second one the subdomain Qj, with Q; N Q2 = @ and
Q=0 UQU (891 0692).

Suppose also that the thermal conductivity of the body occupying
Q; is 71 and that of the body occupying €23 is 72, i.e.

( ) Y1 if.’DEQl,
r) =
7 v if z € Q.

Then the temperature and flux of the temperature in a point = € €2 of
the composite take respectively, the values

u(z) = {ul(x) if z € 4,

ug(z) ifz €y

and

q1 =7 grad u; in Q,
q= .
g2 = Y2 grad uz in .

The usual physical assumptions are the contin{lity of the temperature u
and of the flux g at the interface of the two materials, i.e.

(1.4)

u; =ug on 0Q; NON,,
qi.ny gz.m2 On 891 n 692,

where n; is the outward normal unit vector to 8;, i = 1,2 and n; =
—ng on 9y N OQ,. Therefore, the temperature u is the solution of the
stationary thermal problem. The corresponding system (1.1) reads

—div(y(z) grad u(z)) = f(z) in Q1 UQ,
u=0 ondN,

U3 = u2 on 891 N 692, (15)

q1-n1 = g2.ne on 0 N ON,.

Formally, we can write this system in the form
—div(y(z) grad u(z)) = f(z) inQ, L&
u=0 on 9. (16)
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Actually, the proper formulation of problem (1.6) (or (1.5)) is a vari-
ational equality, namely

find v € H such that
N
Odu Ov
Z/ﬂfy(z) o2, a—%da: = /vad:c, Yv e H,
=1

where H is the appropriate Sobolev space taking into account the bound-
ary conditions on u (here H = H}(Q)). In (1.7) the derivatives are taken
in the sense of distributions, and (1.6) is equivalent to (1.7) when con-
sidered in the sense of distributions provided u is in the space H. In
general, the sense to be given to (1.6) is only that u solves (1.7). The
equation in (1.7) is checked for every v belonging to the space H, so v
is usually called a test function.

Let us turn back to the question of the macroscopic behaviour of the
composite material occupying 2. Suppose that the heterogeneities are
very small with respect to the size of Q2 and that they are evenly dis-
tributed. This is a realistic assumption for a large class of applications.
From the mathematical point of view, one can modelize this distribution
by supposing that it is periodic (see Figure 1).

1.7)

5 [ 5 ) g 57

/O350 )0 0 p0 0 po poO
B EEBEBBEBEH

190 )0 pO pO 0O O pO p0O

OO pO 0 pO poO p0O 0

Figure 1

The scale of the periodicity (the size of the period) is small with
respect to the macroscopic size in the problem. Let us call it &.
The usual presentation of problem (1.7) is to consider coefficients
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which are e-periodic. Thus it reads

Find u® € H such that
€ 1.8
Z/ 8u 811 / fvdz, Vv e H. (1.8)

For the purely periodic case, ¥¢ in (1.8) has the form

~v& () = 7(%) a.e. on RV, (1.9)

where v is a given periodic function of period Y. This means that we
are given a reference period Y, in which the reference heterogeneities are
given. By definition (1.9), the heterogeneities in 2 are of size of order of
€ and are periodically distributed according to the period €Y. Problem
(1.8) is then written as follows:

Find u® € H such that
1.10
Z/ Bu b mz/fvdx, Vv € H. ( )
az, oz; Q

Figure 2 shows the periodic structure of {2 together with the basic period
Y. In this simple model, exactly two scales characterize the structure,
the macroscopic scale z and the microscopic one Z, describing the micro-
oscillations.

The discontinuities of this problem make the model somewhat diffi-
cult to treat within the classical theory of partial differential equations as
well as from the numerical point of view. Also, the pointwise knowledge
of the characteristic of the material does not provide any information on
its the global behavior in a simple way.

In this setting, many natural questions arise:

(i) does the temperature u® converge to some limit function u°?

(ii) if so, does u® solve some limit boundary value problem?

(ii) are then the coefficients of the limit problem constant?

(iv) finally, is u° a good approximation of u*?

These questions are very important in the applications since, if one
can give positive answers, then the limit coefficients, as it is expected by
engineers and physicists, are good approximations of the global charac-
teristics of the composite material, when regarded as an homogeneous
one. Moreover, replacing the problem by the limit one, allows to make
easy numerical computations.

Let us give the main steps of the procedure, and indicate the main
difficulties.
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Figure 2

The first point is that the function ¢ converges in a weak sense to
the mean value of v , i.e. one has

/'yE(a:)v(a:)d:v—>/My('y)v(z)dz, (1.11)
Q Q

for any integrable function v (cf. Theorem 1.1 below). Here the mean
value My (f) is defined by

My(y) = ﬁ /Y v(y)dy.

Next, one can also use weak compactness in the space H to show
that, up to a subsequence u® converges to some function u° and that
Vu¢ weakly converges to Vu®. The use of subsequences (which are
given by weak compctness arguments) is will not really be a cause for
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trouble, because (at least in many cases including here) the limit problem
obtained has a unique solution. Therefore, at the end of the proof, the
whole sequence will converge.

The question is whether this is sufficient to homogenize problem
(1.10). To do so, one has to pass to the limit in the product &5 = 45 Vus.
This is the main difficulty in the homogenization theory. In gen-
eral, the product of two weakly convergent sequences does not converge
to the product of the weak limit. But, (up to a subsequence), there is a
vector function £°, which is the weak limit of the product v*Vue. It is
easily proved then that this function £° satisfies the equation

—dive? = f. (1.12)

But since

€% # My (7)Vu?,

from (1.12) one cannot deduce an equation satisfied by u°.

This already occurs in the one-dimensional case where Q) is some
interval (di1,d2). Here, one can carry out the full computation explicitely.
Since, in one dimension, the divergence is the derivative, it follows from
(1.8) or (1.10) that £° is bounded in H(d;, d2) hence strongly compact
in L?(dy1,dz). Up to a subsequence, one can assume that £° converges
strongly to some £° in the latter space, so that

1w
@

It then follows that u® is the unique solution of the homogenized problem

dut 1 . 1) o duf o _
a5 —;E MY (;)& _d—x, thUSE =

d 1 du®
—— | ——F—~ 5= | =f inldi,ds],
d d
T MY (%) T
uo(dl) = uo(dz) =0.
Clearly, £° # My (vy)Vu0, since
1
— #M, (1),
My (3)

unless < is constant (but then, there is no composite!).

Therefore, even for the one-dimensional case this homogenization re-
sult is not completely trivial. The situation is of course, more compli-
cated in the general N-dimensional case. The one-dimensional result
could suggest that in the N-dimensional case the limit problem can be
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described in terms of the mean value of y~!. This is not true, as it can
already be seen in the case of layered materials where v depends only
on one variable, say ;. Then, the homogenized problem of (1.10) is

{ —div(A°Vu0) = f inQ,

(1.13)
w9 =0 on 909,

where the homogenized matrix A° is constant, diagonal and given by

1

— 0 0
M, (r7)
A° = 0 M () ... 0
0 0 s ML)

This can be seen as the rule of composition of resistances (inverses of
the conductances v°) in series in the first direction, and in parallel in
the other directions.

Note that the homogenized material is no more isotropic, since A° is
not of the form a°I.

We will see that for the general N-dimensional case, the homogenized
problem is still of the form (1.13). The coefficients of A° are defined by
means of some periodic functions which are the solutions of boundary
value problems of the same type as (1.10), but posed in the reference
cell Y and with periodic boundary conditions. More precisely,

1 1 ox; .
al] IYI /}/’y ij AY |Y| . 78:‘]{ Y, v 2,7 1, ,N, (1 14)

where d;; is the Kronecker symbol. For each j =1,..., N, the function
X; is the solution of the so-called “cell-problem”
. oy .
—div(y(y)Vx;) = —5} inY,
j
X; Y-periodic, (1.15)
My (x;) =0.

This result can be proved by various methods, which will be sketched in
the following section.

In all of them, e-periodic functions play an important role, and their
strong or weak convergences are fundamental. In this respect, let us
state the most general result concerning such functions. It will be stated

in the whole of RN and can be localized in any/every bounded domain
Q.
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Theorem 1.1. Let {F.}. be a sequence of measurable functions on the
period Y, and set f.(z) = F.(Z), defined on RY. Then
P

(i) for any p € [1,00], the sequence {f:}e is bounded in LF (RM)
(hence in any/every LP(SY) for ) bounded in RY) if and only if the
sequence {F}¢ is bounded in LP(Y);

(ii) for any p € [1,00], the sequence {fc}e is weakly convergent in
L? (RN) (hence in any/every LP(Q) for Q bounded in RY) if and
only if the sequence {My (F¢)}e converges in R (for p = oo, weak
convergence is to be replaced by weak-* convergence); in such a
case, the weak (or weakx) limit of {f:}. is the constant function

lim, .o MY({FE})7

(iii) for any p € [1,00], the sequence {fc}e is strongly convergent in
LP (RN) (hence in any/every LP(Q) for Q bounded in RN) if
and only if the sequence {F.}. converges strongly to a constant
in LP(Y); in such a case, the strong limit of {fc}c is that very

constant.

The proof of Theorem 1.1 is a mere corollary in the Periodic Unfold-
ing method, which is presented in another course.

The presentation of this introductory course is largely inspired by the
book of D. Cioranescu and P. Donato, [5]. It is recommended reading.
We also refer to its Bibliography for an extensive list of references on the
subject up to its publication date.

Another book which is older but still of great interest is that of A.
Bensoussan, J.-L. Lions and G. Papanicolaou [2]. For two generalizations
which we will not cover, we refer to two books and their bibliography.
The first one is [3], an introduction for the method of I'-convergence,
where it is applied to the case of non-quadratic energies. The second is
[6], which considers the specific case of reticulated structures.

2 The main ideas of Homogenization

As seen in the above brief description, the theory of homogenization is
a way to approach the study of problems with rapidly oscillating coeffi-
cients, approximating them by problems with smoother coefficients. It
basically goes in three steps.

The three steps of Homogenization

1) To embed the original problem in a family of similar problems in-
dexed by a small parameter “c”. The physical problem corresponds
to some specific value, say €¢ of e. Corresponding to each € > 0,
there may be one or many solutions u°.



