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Preface

In his Voices of Silence, André Malraux characterizes modern books
of art reproductions as “Museums without Walls,” lifting the observer
out of the confines of any one museum and showing him the entire
world of art. In the same spirit, this book attempts to combine text
and illustrations to remove chemistry from the laboratory and present
“Chemistry without Walls.” The proper setting for the study of
chemistry is the entire material universe, living and nonliving, and
this is the motivation behind the writing of this book.

Chemistry sometimes is taught as a laboratory-oriented science,
in which a practitioner at the bench adds one substance to another,
and precipitates a third substance that subsequently is analyzed or
used. Chemistry then becomes narrowed down to an intellectual ex-
ercise carried out by human beings. This is one aspect of the subject,
it is true, but it bears the same relationship to the chemistry of this
book as an exercise machine does to bicycle touring. Everything is
chemistry. There is no change that occurs in our material universe
that does not involve chemical processes. At one extreme, nuclear
reactions can be described in chemical terms if proper account is
taken of the conversion of mass to energy. At the other extreme, the
activities of living organisms have their foundations in chemical pro-
" cesses. One of the most exciting future areas for study will be that
of discovering in more detail how chemical reactions lead to the ob-
served behavior of living organisms, and how these complex, living
chemical systems evolved on our planet (and perhaps others).

Modern chemistry is essentially pictorial. Most of our success
in explaining how chemical reactions take place has come from a
knowledge of the structures of molecules in three dimensions, and the
arrangements of electrons in molecules. Although the calculations of
modern theoretical chemistry can be complicated, they are based
firmly on models of molecules and reactions. The chemist combines
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information from many sources, and uses his imagination to “see
molecules that are below the resolving power of the finest microscope.

A one-line chemical equation can conjure up images of moving
and colliding molecules in the mind of an experienced chemist, but to
a beginner it can conceal as much as it reveals. An introductory
chemistry textbook should illustrate in clear detail exactly what these
shorthand equations really symbolize. At the beginning level, the
guiding principle should be, “When in doubt, draw it out.” An ideal
combination of authors would be a chemist who understands the art
of graphic presentation, and an illustrator who understands chem-
istry. This is the combination that we have tried to put together in
this book.

The format of Chemistry, Matter, and the Universe is un-
usual. Every important chemical concept is illustrated, with an aver-
age of more than a figure per page, yet the book is not “illustrated”
at all in the traditional sense. The writer and artist planned this book
together as coauthors from the very first stages, discussing each two-
page layout extensively from a chapter outline before either text or
drawings existed. What were the key ideas of each chapter, and how
could they be expressed pictorially? Every illustration performs some
pedagogical function, even the outrageous cartoons. Drawings and
narrative were planned together to form an organic whole, which is
why no figure numbers are used. When the words describe an idea,
the grapnic realization of that idea is in front of the reader as re-
inforcement. This has made the book more laborious to produce, but
has made the finished product a better teaching device.

Chemistry, Matter, and the Universe is intended primarily for
a two-semester course, although it has been designed so it can be
used for several shorter courses if desired. Each chapter in this
book builds on what has come before. Although it is not easy to
skip from one chapter to another, it is easy to progress steadily
through the book but to stop at any one of several points. The first
ten chapters are devoted to a qualitative and descriptive look at the
chemical elements, the periodic table, molecular structure and bond-
ing, and the chemical nature of our world. These chapters provide
suitable material for a ten- or twelve-week course in chemistry for
liberal arts or humanities students, and should leave the reader with
at least an appreciation of the chemical nature of our universe. Chap-
ters 11 through 17 introduce chemistry as a quantitative science, with
discussions of mass, energy, entropy, chemical equilibrium, and the
rates and mechanisms of reaction. Together, these seventeen chapters
can be used in a half-year or two-term chemistry course for non-
majors.

After a shift in perspective in Chapter 18, the final eight chap-
ters lead the reader into the world of carbon compounds, macro-
molecules, and living organisms. Blaise Pascal described the universe
as extending between two infinities, the infinitely large and the infi-
nitely small; or in the language of science, from galaxies to nuclei.
To these limits Teilhard de Chardin added a third: the infinitely com-
plex. Life would be impossible without complex networks of reactions
involving macromolecules, and of all the elements known, only carbon
appears to be capable of building such molecules. Chemical systems
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complicated enough to show the properties of life must be organized
both in space and in time; they must possess both a structure and
a metabolism. The study of carbon-based life, and the question of
whether it is the only possible form of life, are subjects that our re-
cent advances in space exploration have transformed from philosophy
into experimental chemistry. Chemistry, Matter, and the Universe
ends with what the authors believe to be the most exciting great chal-
lenge facing chemistry: the problem of life.

In the traditional nomenclature, Chapters 1-10 would be de-
scribed as inorganic chemistry, Chapters 11-17 as physical chemis-
try, Chapters 18-21 as organic chemistry, and Chapters 22-26 as
biochemistry. Although this is true in principle, we try to show that
these categories overlap, and are more pedagogical than real. Chem-
istry should be thought of as a unified whole, and in the most general
terms as a framework for explaining the world in which we live, and
from which we have evolved.

January 1976 Richard E. Dickerson
Irving Geis
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« The Whirlpool Galaxy (Messier 51), one of billions of galaxies in the universe. Courtesy of The Hale Observatories

CHAPTER 1

The View From
a Distant Universe

Many reasons can be given for studying chemistry, ranging from, “It
is an intellectual adventure,” to ‘I can make a good living at it,” or even
“Tt is required for graduation.” But the most valid response is simple.
Chemistry is the study of how matter behaves. We have only one world
in which to live. If we want to know how we can change it and what we
cannot alter, or even simply to appreciate what we already have, then
we must know how it works. Chemistry is the subject that tells us this.
Physics may teach us fundamental facts about elementary particles,
matter, and energy, but it stops short of drawing conclusions about how
the different kinds of matter around us change and react. Biology de-
scribes the large-scale behavior of organisms, which at their core are
elaborate chemical systems. Some of the most fruitful advances in biol-
ogy in the past two decades have come from a thoroughly chemical ap-
proach. If we can expand the concept of chemistry beyond our present
limited and inadequate knowledge, then biology fundamentally is the
highest form of applied chemistry. If chemistry is the study of how
matter behaves, we must not forget that we, ourselves, are an integral
part of this material world.

If we look at the world around us with a beginner’s eye, it seems
terrifyingly complex. Everything material is chemical, and everything
is reacting, on one time scale or another. How can we possibly keep
track of what is going on around us, let alone understand the principles
involved? The chemical reactions that go on in our world are more
tightly interlocked than was realized only a few years ago. How can we
manipulate these reactions to our own advantage, and how can we be
sure that if we change things at one place, this will not create unforeseen
troubles somewhere else? These are real problems, and as the popula-
tion of this planet has increased and the resources available recognized
as finite, a great many people have come to ponder such problems.
Chemistry, considered as a technique for managing a small planet,
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Out of 1000 atoms in the universe, 999 are
either hydrogen (light dots) or helium (color
dots). Only one atom out of a thousand is one
of the heavier elements (white dot).

seems much more formidable now than a few years ago when it was re-
garded only as a method of making new plastics and fuels. If you want
to learn something about chemistry today, where do you begin?

The easiest way to begin is to step back a few million light years,
and take a more detached view of the material universe. Some of the
complexities then smooth out and the scene becomes simpler. What we
see are many glowing bodies—stars—organized into star clusters, gal-
axies, and clusters of galaxies, extending to the outermost reaches of
the universe. In our field of view, 999 out of 1000 atoms are either of the
two lightest chemical elements—hydrogen or helium—with only a lone
one-in-a-thousand being a heavier atom (left). All of the elements,
compounds, and substances that loom so large on our planet are noth-
ing more than “minor impurities” in the universe as a whole. The dust
clouds between stars are predominately hydrogen, although careful ex-
amination will show a few other simple molecules. The heavier elements
are found scattered in these dust clouds, in the centers of stars, and in
the cold satellites such as Earth, which travel virtually undetected
around some of the stars. On this scale, the material universe mainly is
a world of hydrogen and helium.

A SIMPLE WORLD

Things are simpler in such a world. The same pieces that make up all
atoms—protons, neutrons, and electrons—also make up hydrogen and
helium, but in an especially simple way. In the following chapter, we
will begin the study of atomic structure with a detailed discussion of
hydrogen and helium. The reactions that these elements by themselves
can undergo are simple and few. Four hydrogen atoms can fuse to make
a helium atom, and the stars are fueled by the energy from this reaction.
If the temperature at the center of a star is high enough, hydrogen
fusion can be followed by helium fusion, and successive reactions, to
produce the heavier elements. The heaviest of these elements have a
tendency to break down again spontaneously, in the process of atomic
fission.

These examples all are nuclear reactions, in which one element is
changed into another element by altering the structure of its nucleus.
Nuclear reactions ordinarily are considered as part of the realm of
physics, not chemistry. At far lower temperatures, closer to those of our
own planet, the first true chemical reactions can take place, in which
atoms come together, separate, and associate with other atoms, without
altering their nuclear structures and their own identities. If two hydro-
gen atoms are brought together at a moderate temperature, they will
bind to one another to form an H—H or H, molecule. Helium atoms
do not behave in this way. When they collide, they bounce away un-
changed and show little tendency to associate. The concept of the
chemical bond that holds H atoms together, but not those of He, is the
most important single idea in chemistry. When do bonds form between
atoms, and why, and in what directions? How do these bonds deter-
mine how the resulting chemical substances behave?



THE STATES OF MATTER

At temperatures similar to those on our planet, helium atoms (He) and
hydrogen molecules (H.) move about individually. Each atom or mole-
cule in a gas moves independently with a speed that depends on its en-
ergy of motion. The higher the temperature, the faster the atoms or
molecules of a gas move; and temperature in fact is a direct measure of
the average energy of the molecules of a gas.

Gases are not the only form of matter in the universe. Liquids and
solids also exist, especially with larger molecules and at lower temper-
atures. Every atom or molecule has a weak attraction for other atoms
and molecules, or a “stickiness” on contact, known as van der Waals
attraction. If the temperature is low and the energy of motion of a col-
lection of molecules is small enough, this van der Waals attraction will
hold the molecules together in a liquid. The molecules remain in con-
tact but are free to slide past one another. At even lower temperatures
and molecular energies, this freedom of motion is reduced further, and
the molecules become locked into the frozen geometry of a solid.

Tiny particles such as He and H, must be cooled to extremely
low temperatures before they condense to a liquid or freeze to a solid.
Larger molecules with more surface area have greater van der Waals
“stickiness,” and occur as liquids or solids at room temperature. Some

\\__//"
RS N I
\ VAP < A
—~ %) /@) (@@ Yy
/ \ e ) | LN 7 L=~ N
\ T NS WY rsawil JOraVrY
N @ I N ‘,{ PR y
VeV e a2 /e e
\ /I /' =< ‘ 1 ~ =1 ‘ /‘\ . /\
<~ N _ y \\\~__//\\\ ) “N\__-" N _
\ S
~ e l\ ‘ / \\~ )
~—" -
/"\\ 7N TN TN TN TN TN TN TN TN
/ / / \/ \/ / \/ V/ \/ \/ \
, N0,
(&j8/08/8/8/0,8,8/8,
\_/\/\/\/\/\f\/\/\{\

SN
/ ' 17
| //
\\_—/

TN

/ N\ —

\ ~ \— -

\ /-

N~/

GAS: In a gas the individual
molecules move freely through
space, and do not touch except
at the moments of collision,
from which they rebound. A
gas has neither a fixed shape
nor a fixed volume; it adapts
to the shape of its container
and can be expanded or com-
pressed.

LIQUID: The molecules of a
liquid are in contact with one
another, but have enough
energy to slip past one another
and change their positions.
Therefore, a liquid has a rela-
tively fixed volume, but no
definite shape.

SOLID: In a crystalline solid
the molecules are packed
against one another in a regu-
lar pattern, and do not have
enough energy to break that
pattern and slide from one
place to another. Crystals have
a definite volume and shape,
and work must be done to de-
form or break them.




THE CONE NEBULA: The dark cone is a
cloud of gas, mainly hydrogen, which obscures
the light of the more luminous stars behind.
New stars condense from such dark gas clouds.
Courtesy of The Hale Observatories.

atoms can gain or lose electrons to become electrically charged ions.
These ions are held together in solids known as salts by the electrostatic
forces between ions of opposite charge. After the study of bond-mak-
ing-and-breaking reactions that molecules can undergo, one of the most
important areas of chemistry is to explain the behavior and properties
of substances in terms of the interactions between the molecules of
which they are made.

THE BIOGRAPHY OF A UNIVERSE

The universe is very far from being chemically uniform, which is a result
of the way the universe developed. The earliest stars, perhaps thirteen
billion years ago, condensed from a thin gas of hydrogen. As a star con-
densed, the heat generated in its center triggered the hydrogen fusion
process, in which four hydrogen nuclei coalesce to a helium nucleus with
the release of a large amount of energy. The star “switched on.” In big
stars with sufficient ability to retain heat, higher temperatures in the
center led to the successive triggering of helium fusion and then to reac-
tions producing the heavier elements. The stars were the “crucibles” in
which the heavier elements were formed. Supernova explosions scat-
tered these elements through the cosmos as debris from which, in time,
the second-generation suns such as our own formed.

Our solar system thus was enriched in heavy elements from its
very beginning. As the sun coalesced at the center of a cloud of diffused
matter, so did the various planets farther out. The large planets with
enough gravitational pull to retain all of their original material, such
as Jupiter and Saturn, remained sunlike in overall composition. The
Earth and the other small inner planets had their volatile elements
driven away by the heat of the sun and by the weakness of their own
attraction for them. The only substances left were the nonvolatiles;
thus Earth became a denuded ball of rock. This is why our planet is so
rich in silicon—oxygen minerals today; these were the substances that
would not boil away.

Our Earth has an atmosphere today only because of outgassing of
the planetary interior, mainly through volcanic action after surface
temperatures had fallen. The gases that were emitted were not those
that were most common in the original material of the solar system, but
those that could be trapped in chemical combination with minerals:
water vapor, ammonia, hydrogen sulfide, carbon dioxide, and other
small carbon and nitrogen molecules. The helium that was present ini-
tially was lost because it did not react chemically and could not be re-
tained in a nonvolatile form.

Our present atmosphere, which essentially is 809 nitrogen and
20% oxygen, is quite different even from the original outgassed atmo-
sphere. That primal atmosphere contained many components that
would combine readily with oxygen, but did not contain free oxygen it-
self. Today’s oxygen-rich atmosphere is the result of the slow action by
one of the most remarkable phenomena to arise in the universe: Life.
Out of this pool of carbon, oxygen, nitrogen, and hydrogen compounds,
on the surface of a ball of silicate rock, there evolved the most complex
and most subtle chemical systems that the universe has known: living



organisms. The story of how living organisms evolved and how they
have transformed our planet is a fascinating one, but one that will have
to wait until we have laid a chemical basis for understanding it. In the
last chapters of this book we will return to this subject, as an attempt
to tie everything together. Life was the final stage of the selection of
certain elements from among many, the last of a series of fractionations
of chemical elements from a universal pool made up of hydrogen and
helium, plus a few trace impurities. We are the result of these impuri-
ties, and one central theme of this book is devoted to explaining, to the
best of our ability, how this came about.

QUESTIONS

1. Why do liquids and solids have a relatively fixed volume (subject
to small expansions and contractions due to temperature), where-
as the volume of a gas is much more variable?

2. Why do crystalline solids have a fixed shape, whereas liquids and
gases adapt to the shape of their containers?

3. What is different about the way that liquids and gases adapt to
their containers?

4. What holds the molecules of a molecular liquid or solid together?
Why doesn’t this same factor hold for gases?

5. What were the earliest two chemical elements?

6. Why are these two elements so much rarer on Earth than they are
in the universe as a whole?
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« Elementary particles (electrons, protons, and neutrons) that make up the hydrogen and helium atoms

CHAPTER 2

Atoms, Molecules, and Moles

Hydrogen and helium occupy a special place in the chemical world be-
cause they are the elements from which all other elements were made.
They have another aspect that makes them useful to us now: They are
the simplest of all atoms. All of the ideas about simple atomic structure
that can be illustrated with hydrogen and helium will carry directly
over to the study of the heavier atoms.

ELECTRONS, NUCLEL AND ATOMIC NUMBER

An atom is made up of a very small but heavy central nucleus with a
positive charge, surrounded by a negatively charged cloud of electrons.
Because atoms are so small, the familiar units of feet or centimeters are
useless in measuring them. A more common unit of length is the ang-
strom, symbolized A. There are 100,000,000 or 108 A in one centimeter,
or to express matters the other way around,

1A=

1(1)8 cm = 108 cm = 0.00000001 cm
Most atoms are of the order of 1.0 A to 2.4 A in diameter, which is why
angstroms are so convenient.
The nucleus of an atom is much smaller yet, typically with a diam- 1
eter of 1013 cm or 105 A. If an atom were as large as a football sta- H I
H

HYDROGEN HELIUM

Atomic number 2

dium, the nucleus would be the size of a small ladybug crawling across
the 50-yard line. In spite of this size difference, virtually all of the mass
of an atom is concentrated in its nucleus. One electron, which has a
negative charge, weighs only 1/1836 as much as the lightest of all

He

nuclei, that of the hydrogen atom (proton). The electron shells of hydrogen and helium
A ) , . . . atoms will be symbolized by rectangles. When
An atomic nucleus is built from two major kinds of particles: pro- 1 shell is filled (as in helium), the rectangle

tons and neutrons. A proton carries one unit of positive charge, which  will be colored.



