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INTRODUCTION

Few of us can any longer keep up with the flood of scientific literature, even
in specialized subfields. Any attempt to do more and be broadly educated
with respect to a large domain of science has the appearance of tilting at
windmills. Yet the synthesis of ideas drawn from different subjects into new,
powerful, general concepts is as valuable as ever, and the desire to remain
educated persists in all scientists. This series, Advances in Chemical
Physics, is devoted to helping the reader obtain general information about a
wide variety of topics in chemical physics, a field that we interpret very
broadly. Our intent is to have experts present comprehensive analyses of
subjects of interest and to encourage the expression of individual points of
view. We hope that this approach to the presentation of an overview of a
subject will both stimulate new research and serve as a personalized learning
text for beginners in a field.

STUART A. RICE
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2 STUART C. ALTHORPE, JUAN CARLOS JUANES-MARCOS, AND ECKART WREDE
I. INTRODUCTION

Research over the past 15 years has established that conical intersections (CIs)
are much more common than previously thought, and that they play a central
role in photochemistry [1, 2]. The main role of a CI is to act as a funnel,
transferring population between the upper and lower adiabatic electronic states.
This effect has been studied extensively, and is well known to be caused by the
derivative coupling terms between the two electronic surfaces [3], which are
singular at the CI. However, an accompanying effect, which has received less
attention, is the so-called geometric (or Berry) phase (GP), in which the
adiabatic electronic wave function changes sign upon following a closed loop
around the CI [4-9]. This effect is particularly interesting when the system is
confined to the lower adiabatic surface, since it is then the only nonadiabatic
effect produced by the CI.

The GP affects the nuclear dynamics by introducing a corresponding sign
change in the continuity boundary condition, which cancels out the sign change
in the electronic wave function (in order to keep the total wave function single
valued). In a model particle-on-a-ring system, with the CI at the center of the
ring, the GP boundary condition changes the allowed values of M in the nuclear
wave function, exp(iM¢), from integer to half-integer values. The GP brings
about analogous changes in the quantum numbers and energy levels of more
realistic systems, and some of these have been predicted and observed in a
variety of Jahn—Teller molecules [10—13]. One can say with some confidence,
therefore, that the effect of the GP on the nuclear wave function of a bound-state
system is well understood.

Until very recently, however, the same could not be said for reactive systems,
which we define to be systems in which the nuclear wave function satisfies
scattering boundary conditions. It was understood that, as in a bound system, the
nuclear wave function of a reactive system must encircle the CI if nontrivial GP
effects are to appear in any observables [6]. Mead showed how to predict such
effects in the special case that the encirclement is produced by the requirements
of particle-exchange symmetry [14]. However, little was known about the effect
of the GP when the encirclement is produced by reaction paths that loop around
the CIL

Very recently, this state of affairs has changed, and there is now a good
general understanding of GP effects in gas-phase reactions. This has come about
mainly through detailed reactive-scattering studies, both theoretical [15-37]
and experimental [30-39], on the prototype hydrogen-exchange reaction
(H+H; — Hy + H). This is the simplest reaction to possess a CI, and at
high energies (> 1.8eV above the potential minimum) it is just possible for
some reaction paths to encircle the CI. Reactive-scattering calculations are
difficult, and the first calculations that included the GP boundary condition were
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reported by Kuppermann and co-workers in the early 1990s [15-19]. These
calculations predicted large GP effects at high energies, but unfortunately these
predictions were not reproduced by later calculations [20-29], nor, most
crucially, by experiment [30—-39]. Instead, the experiments found no evidence at
all of GP effects in the H + H, reaction. Detailed scattering data from the
experiments agreed quantitatively with theoretical predictions that omitted the
GP boundary condition.

This negative result seemed to imply that H+ H, could not be used to
investigate the effect of the GP because the nuclear wave function does not
encircle the CI. However, a series of calculations by Kendrick [20-22] yielded a
surprising result, which we will refer to in this chapter as the *‘cancellation
puzzle”. This is that GP effects appear in the scattering observables at specific
values of the total angular momentum quantum number J, but cancel on
summing over J to give the full reactive scattering wave function (describing a
rectilinear collision of the reagents). This is puzzling because the sum over J is a
unitary transformation in the external, angular, degrees of freedom, which
describe the scattering of the products, and there is no direct relation linking this
space to the GP boundary condition (which acts on the internal degrees of
freedom describing motion around the CI).

This chapter surveys the work we did [25-29] to solve the cancellation
puzzle, and the general explanation of GP effects in reactive systems that
came out of it [27,28]. The latter uses ideas that were introduced in the late
1960s in Feynman path-integral [40] work on the analogous Aharonov—Bohm
effect [41-45]. These early papers seem to have passed unnoticed in the
chemical physics community, perhaps because they are written in the
language of path-integral theory and algebraic topology. However, the central
result of this work is surprisingly simple, and can be derived without path-
integrals [27,28]. It is that the nuclear wave function has two components,
and that the sole effect of the GP is to change their relative sign. One
component contains all the Feynman paths that loop an even number of times
around the CI; the other contains all the paths that loop an odd number
of times.

In Section II, we introduce this central result, deriving it first without path
integrals, by using a diagrammatic representation of the nuclear wave function;
we then give a heuristic summary of the ideas behind the early Aharonov—-Bohm
papers, and show how they can be combined with the diagrammatic approach.
In Section III, we describe in detail the solution to the cancellation puzzle in
H + H,, which demonstrates how to explain GP effects in a reaction in terms of
the even- and odd-looping Feynman paths. In Section IV, we discuss some
further aspects of the topology, explaining the effect of particle-exchange
symmetry, and the difference between GP effects in bound and reactive systems.
Section V concludes the chapter.
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II. UNWINDING THE NUCLEAR WAVE FUNCTION

A. Topology and Encirclement

We will consider a system with N nuclear degrees of freedom, which possesses
one CI seam [1,2] of dimension N — 2. The topology of the nuclear space can
then be represented schematically as shown in Fig. 1 [28]. The line at the center
represents every CI point in the seam. Each circular cut through the cylinder
represents the two degrees of freedom in the nuclear “branching space”, in
which the adiabatic potential energy surfaces have the familiar double-cone
shape, centred about the CI point. We assume that the seam line extends
throughout the entire region of energetically accessible nuclear coordinates
space. We also assume that the system is confined to the lower (adiabatic)
electronic state, because it has insufficient energy to approach the region
of strong coupling with the upper state close to the conical intersection. The CI
seam line is therefore surrounded by a tube of inaccessible coordinate space.
We then define an internal coordinate ¢ such that ¢ = 0 — 27 denotes a a
path that has described one complete loop around the CI in the nuclear
branching space. Other than this, we need specify no further details about ¢.
We do not even need to specify whether the complete set of nuclear
coordinates give a direct product representation of the space. It is sufficient
that ¢ permits us to count how many times a closed loop has wound around
the CI. Using this definition of ¢, we can express the effect of the GP on the

(b) (c)

Figure 1. (a) Diagram illustrating the topology of the N-dimensional nuclear coordinate space
of a reactive system with a CI. The vertical line represents the (N — 2)-dimensional space occupied
by the CI seam. The gray disk represents a two-dimensional (2D) branching-space cut through
one point on the seam, with the angle ¢ describing internal rotation around the CI. (b) A nuclear
wave function that wraps around the CI, but is not a torus, and thus exhibits only trivial GP effects.
(¢) A torus-shaped nuclear wave function encircling the CI. The ““arms” are to be understood
as extending to infinity, and are the portions of the wave function in the reagent and product
channels.
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adiabatic ground-state electronic wave function ®(¢) and the nuclear wave
function () as

(¢ +2nm) = (—1)"®(d) (1)
W(d +2nm) = (=1)"¥(¢) (2)

The dependence on the other N — I nuclear degrees of freedom has been
suppressed.

The effects of the GP are therefore the differences between the nuclear
dynamics described by the wave function

V6(¢) = (=1)"¥g(¢ + 2nm) (3)
which correctly includes the GP boundary condition, and the wave function
Un(P) = Un(d + 2nm) (4)

which ignores it (and is therefore physically incorrect). It is well known in the
literature that the GP will only produce a nontrivial effect on the dynamics
when Wg(¢) encircles the CI. Otherwise the effect is simply a change in the
phase of Wn(d), which has no effect on any observables. Hence, throughout
this chapter, we are seeking to explain how the dynamics described by Wg(¢)
differs from the dynamics described by Wn(¢), when these wave functions
encircle the CI.

It is worth clarifying what is meant by encirclement. As already mentioned,
the nuclear coordinates need not form a direct product, and in fact the notion of
taking a cut through the nuclear coordinate space, in order to see whether
U (o) encircles the CI in this cut, is not useful. Figure 1(b) shows a nuclear
wave function which, if a certain choice of nuclear coordinates were used, could
easily be made to “encircle” the CI if a suitable 2D cut were taken. However,
this particular wave function would not show nontrivial GP effects, because it
does not encircle the CI: it has unconnected “‘ends”. For nontrivial GP effects to
appear, \Ilg(d))|2 must have the form of a forus in the nuclear coordinate space,
as shown in Fig. 1(c). If one were to take a series of branching-space cuts
through this wave function, none of them would encircle the CI, and hence one
might get the mistaken impression that this wave function would only show a
trivial phase change upon inclusion of the GP boundary condition. However, the
wave function of Fig. 1(c) would definitely show strong, nontrivial GP effects.
There are various ways in which one can prove this and we will mention one
below. It is important to emphasise that it is |\I’(;(d>)|2, which has the form of a
torus and not the wave function U (¢).
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B. Symmetry Approach

To explain the effect of the GP on the nuclear dynamics [i.e., to explain the
difference between the dynamics described by an encircling Wg(¢) and an
encircling Wn(¢)], we need to compare the topology of Wg(¢) with the topology
of Un(¢). In Section II. C, we review how this can be done using the homotopy
of the Feynman paths [41-45] that make up these wave functions. But first, to
demonstrate the simplicity of the problem, we use the diagrammatic approach
developed in Refs. [27 and 28].

We represent the internal coordinate space occupied by the nuclear wave
function as shown in Fig. 2. The gray area represents the energetically
accessible region of the potential energy surface; the conical intersection is the
point at the center; the arms represent the reagent entrance and product exit
channels. To simplify the discussion, we place a restriction on ¢ (which will be
relaxed later), stating that ¢ tends to a constant value as the system moves down
the entrance or exit channel toward an asymptotic separation of the reagents or
products. This places no restriction on the generality of the diagram, other than
that the conical intersection should be located in the ““strong-interaction region”
of the potential energy surface, where all the nuclei are close together. Note that,
although we have restricted the number of product channels to one, the diagram
is immediately generalizable to systems with multiple product channels. We
also assume that the reaction is bimolecular (leaving unimolecular reactions
until Section IL.D), which means that it is initiated at the asymptotic limit of the
reagent channel, at the value of ¢ that is reached in this limit. We will define this
to be ¢ = 0.

(a) (b)

Figure 2. (a) Schematic picture of the potential surface of a reactive system, indicating that
there is an energetically accessible (gray) “tube” through the potential surface, permitting
encirclement of the CI (dot at center). The “arms” are the reagent and product channels. (b) The
same surface, represented in the 0 — 4 cover space. The rectangle represents a 0 — 2n sector that
can be cut out of the double space so as to map back onto the single space, where the ¢ = 0 and
¢ = 2m “edges™ are joined together at the cut line (chains).
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Figure 2(b) represents the potential surface of the identical system, mapped
onto the double-cover space [28]. The latter is obtained simply by ‘“‘unwinding”
the encirclement angle ¢, from 0 — 2n to 0 — 4m, such that two (internal)
rotations around the CI are represented as one in the page. The potential is
therefore symmetric under the operation R, defined as an internal rotation by
2n in the double space. To map back onto the single space, one cuts out a 2m-
wide sector from the double space. This is taken to be the 0 — 2r sector in
Fig. 2(b), but any 2n-wide sector would be acceptable. Which particular sector
has been taken is represented by a cut line in the single space, so in Fig. 2(b) the
cut line passes between ¢ = 0 and 2n. Since the single space is the physical
space, any observable obtained from the total (electronic + nuclear) wave
function in this space must be independent of the position of the cut line.

To construct a diagrammatic representation of the wave function, we start in
the double space, as shown in Fig. 3a. The arrow at the top indicates that the
incoming boundary condition is applied here, and the arrows at each of the other
channels indicate outgoing boundary conditions. Note that we are treating the
second appearance of the reagent channel (at ¢ = 2m) as though it were a
product channel, and are treating the second appearance of the product channel
(in the 2m — 4m sector) as though it were physically distinct from the first
appearance of this channel, which is indicated by the use of wavy lines.
Consequently, the wave function W, is neither symmetric nor antisymmetric
under ¢ — ¢ + 27n, which means it cannot be mapped back onto the physical
space independently of the position of the cut line. In other words W, is the
wave function of a completely artificial system.

To construct wave functions that can be mapped back onto the physical
space, one needs to take symmetric and antisymmetric linear combinations of
U.(d) and ¥,(d) = P (b + 27m), and these are illustrated in Fig. 3b. It is then

(a) (©

Figure 3. (a) The unsymmetrised nuclear wave function W, (solid line) in the double space. The
arrows indicate the application of incoming and outgoing scattering boundary conditions, (b) The
symmetrized linear combinations of W, (solid) and W, (dashed), which yield ¥y, = 1/V2[W £ 3,
(c) The same functions mapped back onto the single space.
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clear that these functions can mapped onto the physical space (Fig. 3c), and that
they correspond to Wy and g, respectively. Thus we may write,

1
\IJG == {“I’c -+ \II()]
1 ®
\I/N = ﬁ [\II(, == ‘*Ilo]

This equation is the main result needed to explain the effect of the GP on the
nuclear dynamics of a chemical reaction. Clearly, the sole effect of the GP is to
change the relative sign of W, and ¥,. Within each of these functions the
dynamics is completely unaffected by the GP. We emphasize that, despite
remaining unnoticed for so long in the chemical physics community, Eq. (5) is
exact.

If we can compute ¥g and Wy numerically (as described below), it is
therefore trivial to extract ¥, and ¥, by evaluating

1
U, =—[Uy+ W
\/5[ N G]

1 (©)
\Ilo & % [\IJN - \IJG]

Once one has extracted U, and ¥, an explanation of the GP effect on the nuclear
dynamics will follow immediately. The dynamics in ¥, is decoupled from the
dynamics in W¥,, and thus any observable will show GP effects only if the
corresponding operator samples W, and ¥, in a region of space where these
functions overlap. In a nonencircling nuclear wave function, ¥, and ¥, never
overlap, and this gives us a diagrammatic proof (Fig. 4) of the well-known result
that a nonencircling wave functions shows no nontrivial GP effects.

4t . 0

4

(@)

Figure 4. (a) Single- and (b) double-space representations of ¥, (solid) and ¥, (dashed) for a
system that does not encircle the CI.
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C. Feynman Path Integral Approach

We now explain the physical significance of the two components ¥, and ¥, in
terms of the path integral theory developed in Refs. [41-45]. This theory was
developed originally to treat the Aharonov—Bohm system, in which an electron
encircles, but does not touch, a magnetic solenoid. The vector potential of the
solenoid has an effect that is exactly equivalent to the application of the GP
boundary condition, and scattering boundary conditions are applied at long
range. The Aharonov—Bohm system is therefore exactly analogous to a nuclear
wave function in a reactive system that encircles a CI.

To avoid discouraging the reader, we point out that only a few, basic concepts
of path integrals are required. We review these here in a heuristic manner,
beginning with the celebrated result of Feynman and Hibbs [40], which is that the
time-evolution operator or Kernel, K = exp(—iHt/h), can be constructed using

K(x,x0lr) = [ Dx(o)esnor )

Here, Dx(t) represents the sum over all possible paths connecting the points x
and x in the time interval 7, and S is the classical action evaluated along each of
these individual paths. It is useful to point out two properties of this expression:
(1) the overall sign of the Kernel is arbitrary, because S is only defined up to an
overall constant (because S is the time integral over the Lagrangian, and the latter
is only defined up to a total derivative in ¢ [46]); (2) each path has equal weight,
so the relative contribution of a given path to the sum is determined by the extent
to which it is canceled out by its immediate neighbors.

Any prediction expressed in the language of path integrals must have an
equivalent formulation in the language of wave functions. Point (1) is equivalent
to saying that a wave function is only specified up to an overall phase factor.
Point (2) can be thought of as saying that, when computing K(x,xo|t), all
possible paths between x and X in time 7 are coupled. If we start with one
particular path between x and xo, then we need to know all of its immediate
neighbors, in order to assess the extent to which this path is canceled out by
them. These neighbouring paths are obtained by all possible tiny distortions that
can be applied to the first path. We then need to know all of the immediate
neighbors of each of the latter paths (in order to assess the extent to which each
of these is canceled out), and then we need to find out the immediate neighbors
of the new paths, and so on. In other words, if we start with one particular path
between x and X, then this path is coupled (in the sense just described) to all the
other paths into which it can be continuously deformed. This is equivalent to
saying that one cannot accurately compute just part of a wave function; one
must compute all of it, since all parts of the function are coupled by the
Hamiltonian operator.



