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Foreword

The Handbook of Mathematical Logic is an attempt to share with the
entire mathematical community some modern developments in logic. We
have selected from the wealth of topics available some of those which deal
with the basic concerns of the subject, or are particularly important for
applications to other parts of mathematics, or both.

Mathematical logic is traditionally divided into four parts: model theory,
set theory, recursion theory and proof theory. We have followed this
division, for lack of a better one, in arranging this book. It made the
placement of chapters where there is interaction of several parts of logic a
difficult matter, so the division should be taken with a grain of salt. Each of
the four parts begins with a short guide to the chapters that follow. The first
chapter or two in each part are introductory in scope. More advanced
chapters follow, as do chapters on applied or applicable parts of mathemat-
ical logic. Each chapter is definitely written for someone who 1s
not a specialist in the field in question. On the other hand, each chapter has
its own intended audience which varies from chapter to chapter. In
particular, there are some chapters which are not written for the general
mathematician, but rather are aimed at logicians in one field by logicians in
another.

We hope that many mathematicians will pick up this book out of idle
curiosity and leaf through it to get a feeling for what is going on in another
part of mathematics. It 1s hard to imagine a mathematician who could
spend ten minutes doing this without wanting to pursue a few chapters, and
the introductory sections of others, in somc detail. It is an opportunity that
hasn’t existed before and is the reason for the Handbook.

JoN BARWISE
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Guide to Part A:
Model Theory

with the cooperation of
H. J. KEISLER
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An introduction to first-order logic 5
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. Fundamentals of model theory 47
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Ultraproducts for algebraists* 105
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Model completeness 139
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Homogenous sets 181
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Infinitesimal analysis of curves and surfaces 197

A.7. MAKKAI

Admissible sets and infinitary logic 233
A.8. Kock and REYES :

Doctrines in categorical logic 283

This part of the Handbook 1s concerned with the fundamental relation-
ship between mathematical statements (axioms), on the one hand, and
mathematical structures (models) which satisfy them, on the other. The
emphasis is on the model theory of first-order statements. Barwise’s
chapter, written for those with no prior knowledge ol first-order logic,
explains the most basic notions. This material is really pre-model theory.
and 1s needed for most of the chapters in the Handbook. |

Keisler’s chapter contains the real introduction to model theory. By
glancing through this chapter the reader can see the concerns of the subject
1llustrated with basic results and applications. The next three chapters treat

important topics from model theory in depth and are aimed more at the
algebraist.
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Eklof’s chapter discusses the ultraproduct operation, its relation with
first-order logic, and its positive applications to algebra. Macintyre’s
chapter discusses both positive and negative applications to algebra of
Abraham Robinson’s notion of model complete theory and related concepts
of ‘‘algebraically closed”.

Morley’s chapter on homogenous sets discusses so-called
Ehrenfeucht-Mostowski models. This construction has proven extremely
useful in model theory and in applications to set theory. It has had some
" applications to other parts of mathematics, but should have more once it
becomes better known. ‘

To date the principal application of model theory outside algebra and set
theory comes from Robinson’s ‘““nonstandard analysis’’. Stroyan’s chapter
discusses elementary aspects of the subject and gives a more advanced case
study of the hidden role infinitesimals play in differential geometry.

The last three chapters in Part A go beyond ordinary first-order logic.
Some extensions of first-order logic are mentioned in the last section of
Barwise’s chapter and discussed in more detail in the last section of
Keisler’s chapter. Of all the known extensions, the logic L,,. has the
smoothest model theory. This logic, and its admissible fragments, are
discussed in Makkat’s chapter.

The final chapter, by Kock and Reyes, is quite different in character. It
gives the category theoretical point of view of some topics from. model
theory and other parts of logic.

It was planned to have a chapter on stablllty theory and one on abstract
model theory. This proved impossible so stability theory is now surveyed in
Section 8 of Keisler’'s chapter. Abstract model theory is discussed at the
end of Barwise’s chapter and is touched on in Keisler’s chapter. Among the
other chapters of the Handbook which are particularly relevant to model
theory are Rabin’s chapter on decidable and undecidable theories, and
Aczel's chapter on inductive definitions, both in Part C of the book.
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6 BARWISE / FIRST-ORDER LOGIC [cH. A.1, §2

1. Foreword

This introductory chapter is written for the (less than ideal) mathemati-
citan who knows next to nothing about mathematical logic, and is entirely
expository in nature. This might be someone who tried to read a later
chapter but got bogged down simply because he did not understand the
basic notions. For most readers a quick reading of Section 2 and the
introductions to Sections 4 and 5 should suffice.

Modern mathematics might be described as the science of abstract
objects, be they real numbers, functions, surfaces, algebraic structures or
whatever. Mathematical logic adds a new dimension- to this science by
paying attention to the language used in mathematics, to the ways abstract
objects are defined, and to the laws of logic which govern us as we reason
about these objects. The logician undertakes this study with the hope of
understanding the phenomena of mathematical experience and eventually
contributing to mathematics, both in terms of important results that arise
out of the subject itself (Godel’'s Second Incompleteness Theorem is the
most famous example) and in terms of applications to other branches of
mathematics. The chapters of this Handbook are intended to illustrate
both of these aspects of mathematical logic.

Modern mathematical logic has its origins in the dream of Leibniz of a
universal symbolic calculus which could encompass all mental activity of a
logically rigourous nature, in particular, all of mathematics. This vision was
too grandiose for Leibniz to realize. His writings on the subject were
largely forgotten and had little influence on the actual course of events. It
took Boole, Frege, Peano, Russell and Whitehead, Hilbert, Skolem, Godel,
Tarski and their followers, armed with more powerful abstract methods,
and motivated (at least in the case of Russell and Hilbert) by apparent
problems in the foundations of mathematics, to realize a significant part of
Leibniz’ dream. '

2. How to tell if you are in the realm of first-order logic

Our goal in this section 1s quite modest: to give the reader, by means of
examples, a feeling for what can and what cannot be expressed In
first-order logic. Most of our examples are taken from the wealth of notions
in modern algebra with which most mathematicians have at least a nodding
acquaintance.

The basic building blocks of first-order logic consist of the logical
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connectives: A (and), v (or), = (not), — (implies), the equality symbol =,
quantifiers V (for all), 3 (there exists) plus an infinite sequence of variables
X, ¥, 2, X1, yi,... and some parentheses ), ( to help the formulas stay
readable. |

In addition to these logical symbols, a set L of primitive non-logical
symbols is given by the topic under discussion. For example, if we are
working with abelian groups then the set L has a function symbol + for
group addition and a constant symbol 0 for the zero element. If we are
working with orderings, then L has a relation symbol <. For the study of
set theory, L has a relation symbol € . We will postpone the rather tedious
formal definition of formula of first-order logic until the next section. Here
we stress only that formulas are certain finite strings of symbols.

The “first” in the phrase “‘first-order logic’ is there to distinguish- this
form of logic from stronger logics (like second-order or weak second-order
logic) where certain extralogical notions (like set or natural number) are
taken as given in advance. In particular, in first-order logic the quantifiers V
and 3 always range over elements of the domain M of discourse. By
contrast, second-order logic allows one to quantify over subsets of M and
functions F' mapping, say, M X M into M. (Third-order logic goes on to
sets of functions, etc.) Weak second-order logic allows quantification over
finite subsets of M and over natural numbers. There are good reasons for
considering first-order logic to be the basic language of mathematics; these
will be discussed in Section 5. We assume here that the reader has his own
motivation for wanting to find out what first-order logic is.

Group theory

QOur first few examples come from group theory. Consider the following
notions: |

(a) group,

(b) abelian group,

(c) abelian group with every element of order = n,

(d) divisible group,

(e) torsion-free group,

(f) torsion group.
The notions (a)-(c) are easily axiomatized by a few first-order axioms.
Notions (d) and (e) take an infinite list of axioms. The last notion (f) is not
first-order. Let’s see why.

A group G is a triple G = (G, +,0) (where G is a nonempty set, 0€ G
and + 1s a function mapping G X G into G) which satisfies the following
first-order axioms, or sentences:
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VxVyVz[x+(y+2z)=(x+y)+z], (1)
Vx[x+0=x], | (2)
Vx3y[x+y=0] )

The logician might say that G is a model of (1), (2), (3) and write G k= (1),
(2), (3), instead of saying that G satisfies (1), (2), (3).
An abelian group i1s a group G satisfying the axiom

VxVy[x+y=y+x] (4)

The choice of the symbol *“ +  in (1)—(4) is dictated by convention only; it
has no real significance.

To express the next notion we abbreviate the formal term (x + x) by 2x,
the term ((x + x)+ x) by 3x and, by induction, we abbreviate the term
(nx + x) by (n + 1)x. An abelian group G has every element of order = n
if G 1s a model of

Vx[x=0v2x=0v---vnx=0]. (5)

This is a simple first-order sentence.
An abelian group G is divisible if

Vn=1Vx3dy|[ny = x]. (6)

This would count as a sentence of weak second-order logic but it 1s not a
first-order axiom because the leading quantifier ranges over the set of
positive natural numbers, rather than over the domain of discourse G. We
can, however, replace this expression by the following infinite list of
axioms:

Vx 3y [2y = x], ~(6):
Vx 3y [3y = x], (6)s
Vx 3y [ny = x], (6)-

(We left off (6), since it is the trivial sentence Yx 3y [x = y].) For most
purposes such an effectively presented infinite list of axioms is practically as
good as a finite list. Still, it is worth proving for our own satisfaction that it
is not just lack of imagination which forces us to use an infinite list to
express the notion.

2.1. ProposITION. Any finite set of first-order sentences true in all divisible
abelian groups is true in some nondivisible abelian group.
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In other words, the notion of divisible abelian group is not finitely
axiomatizable in first-order logic. We delay the proof of this result for a few
paragraphs.

We discover essentially the same phenomenon when we attempt to
axiomatize the concept of torsion-free abelian group:

Vn=1Vx[x#0— nx#0]. . (7)

This sentence of weak second-order logic turns into an infinite list of
first-order axioms:

Vx [x# 0— nx # 0]. (7).

We have the corresponding négative result.

2.2. Proro®iTION. The notion of torsion-free abelian group is not finitely
axiomatizable in first-order logic.

An abelian group G is torsion if it satisfies

Vx3n=1[nx =0]. (8)

-

This 1s a sentence of weak second-order logic but it is not first-order

because it has the quantifier 3n over natural numbers. We could try to
imitate (5) but look what happens:

Vx[x=0v2x=0v---vnx=0v---]. (8)'

This sort of expression is analogous to an infinite formal power series and
the study .of such idealized “infinitary formulas’ has turned out to be quite
profitable (see 5.3, and Chapters A.2 and A.7) but.it is not part of ordinary
first-order logic. To cljnch matters we will prove the following result.

2.3. ProprOSITION. The set of first-order sentences true in all torsion abelian
groups is true in some abelian group H which ‘is not torsion.

In faclt, what we will show 1s that if G i1s an abelian group with no finite
bound on the order of its elements, then there is a group H which is not
torsion but such that G = H, which means that every first-order sentence
true in G 1s also true in H, and vice versa. Therefore the class of torsion

groups cannot be characterized even by a set of first-order axioms — finite
or infinite.



