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Chapter 1

WAVE-PARTICLE
DUALITY

1.1 Exercises

E1.1) Consider a microwave source that is generating 2.0 GHz electromagnetic
radiation. Compute the wavelength of the microwaves. If this microwave source
was used in an oven of width 30 cm, how many wavelengths of the microwave
can be included across the oven’s width.

Compute the energy per photon for the 2.0 GHz frequency. If a cup con-
taining 250 mL of water is irradiated by this source, how many photons must
be absorbed to raise the temperature of the water from 25 °C to 80 °C (a nice
temperature for a cup of tea). For simplicity, assume that the water density is
1.0 g/mL, that the heat capacity is 4.184 J/(g degree), and that they do not
change over the temperature range.

Solution: First we calculate the wavelength of a 2.0 GHz microwave and
then compare it to the oven’s width. The wavelength and frequency are related
by A(ecm) = c¢(cm / s) / v (s7!) with ¢ being the speed of light (2.998 x 10%°
cm s~ 1), so

Aem) = (2.998 x 10%m s71)/(2.0 x 109s71)
1.5 x 10'cm = 15.cm

. Hence, the oven is about 2\ wide.

Here we calculate the energy in a 2.0 GHz photon and compare it to the
energy needed to warm the water (assuming no extraneous losses). The energy
and frequency are related by E = hv, so that the energy per photon is

E = (6.626 x 1073* J 5)(2.0 x 10° s71) = 1.3 x 10724 J

. The amount of energy the water must absorb is @ = mC - AT, where m is
the mass of water (250. mL or 250. g), C is the heat capacity, and AT is the

1



2 CHAPTER 1. WAVE-PARTICLE DUALITY

change in temperature (80 — 25) °C. Thus Q = (250. g)(4.184 J / g- °C)(55
°C) = 57,530 J, so that the number of 2.0 GHz photons will be

Q 57530 J s
E 13x10-24] * 10

Because we have ignored any extraneous losses (e.g., heat conduction to the
container, convective cooling, etc.), this value is a lower bound.

E1.2) Consider an ultraviolet light source that generates 300 nm electro-
magnetic radiation. Compute the frequency of the ultraviolet light. If one
photon of this light is absorbed by an organic molecule, how much energy does
the molecule gain? Is this energy enough to break a carbon-carbon bond in
the molecule? Use a ’typical’ carbon-carbon bond energy of 5.8 x 10719 J for
your comparison. Perform the same calculations for a photon of wavelength
600 nm and a photon of wavelength 1200 nm. Perform your comparisons using
the energy units of J and of eV.

Solution: The wavelength and frequency are related by v = ¢/ with cg
being the speed of light (2.998 x 10® m s™!), so v = (2.998 x 10% m s™1)/(300. x
1072 m) = 9.96 x 104 s~1,

The energy and frequency are related by E = hv, so the energy per photon
E = (6.626 x 10734 J ) (9.96 x 101 s~1) = 6.60 x 10719 J.

This amount of energy is “just” sufficient to break a bond of 5.8 x 10~1° J.

The corresponding energies for 600 nm and 1200 nm photons are 6.60/2 x
10719 = 3.30 x 10719 J and 6.60/4 x 1071° = 1.65 x 10~ J, neither of which
is sufficient to break the typical carbon-carbon double bond.

The corresponding energies in eV (1.6 x 10719 J =1 eV) are 4.12 eV (300
nm light), 2.06 eV (600 nm light), and 1.03 eV (1200 nm light).

E1.3) If a source of 58.5 nm wavelength photons (typical of that used in
photoelectron spectroscopy) irradiates a sample of neutral hydrogen atoms, it
is possible to eject electrons from the atoms and generate protons. The most
stable hydrogen atoms (i.e., ground state hydrogen atoms) bind the electron
with about 13.6 eV of energy. Convert the 13.6 eV binding energy into Joules.
Determine the energy of the 58.5 nm photon. Use energy conservation to deduce
the kinetic energy of the photo-ejected electron. If you were trying to measure
the electron’s kinetic energy in an apparatus analogous to that illustrated in
Figure 1.2, what stopping voltage would you need to apply? Comment on
why electron Volts (eV) might be a convenient energy unit for scientists doing
photoelectron spectroscopy.

Solution: First we calculate the energy of a 58.5 nm photon and compare
it to the binding energy of an electron in the H-atom. Using £ = hr we find
that



1.1. EXERCISES 3

he
FE = hl/ = 7
(6.626 x 10734 J-5)(2.998 x 108 m s~1)

585 x 1079 m
3.40 x 107 J  for the photon energy.

The binding energy of the electron to the proton in the H-atom is

1.60 x 10719J

13.6 eV
3.6e ( Tov

) =218 x 107'% J.

When the H-atom absorbs the light, the photon energy is converted into elec-
tronic energy, placing the electron above the ionization limit and it can escape
from the atom. The kinetic energy of the photoejected electron is given by the

difference between this absorbed energy and its initial state binding energy,
hence the difference between these two energies or

(3.40 —2.18) x 107¥ J=1.22x 10718 ],

To stop the electrons, the applied potential must be made at least as large
as the electron kinetic energy. The kinetic energy computed above corresponds

to an energy of 1.22 x 1078 J(ﬁﬁ%ﬁ) = 7.62 eV. Hence the stopping
potential would be 7.62 V.

The kinetic energies of the ejected electrons correspond to energies of 1 —
10 eV (a conveniently sized number because of its direct relation to the voltage
difference used in detecting the photoelectrons).

E1.4) Counsider the kinetic energy calculations in E1.3. Perform a similar
calculation but use a photon wavelength of 23 nm. Perform a similar calculation
but use a photon wavelength of 100 nm. Compare your three values of the
kinetic energy and comment on them.

Assuming that the electron is bound by 13.6 €V, determine the largest
wavelength that a photon may have if it is to eject an electron from a hydrogen
atom.

Solution: For the 23 nm photon, we calculate

he _ (6.626 x 10731 J-5)(2.998 x 10°ms™')
A 23. x 10~9m
= 86 x 107¥J  per photon

) =

and for the 100 nm photon we find

he _ (6.626 x 1073 J-5)(2.998 x 108 ms~!)
A 100. x 109 m
= 199 x 10718}

E =
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The kinetic energies of the photoejected electrons resulting from these wave-
lengths are —1.9 x 107*° J (100 nm) and 6.4 x 10~* J (23 nm). The negative
value indicates that an electron can not be ejected from a H atom by 100 nm
light. The increase in kinetic energy with shorter wavelengths results because
the shorter wavelength photons have a higher energy. The table shows how the
photon energy and the kinetic energy of the electron increase with decreasing
wavelength.

A/ nm 100 585 23
E/10718] 1.99 3.40 8.6
kinetic energy /J — 1.22 6.4

The longest wavelength photon that can photoionize an H-atom is that
corresponding to a light energy of 13.6 €V, or

—34 7. N, |
he _ (6.626 x 107°* J-s)(2.998 x 10° m s™) — 018 nm

A = —_—
g (13.6 V) (Lo lo=0 )

E1.5) Consider an electron with a kinetic energy of 1.0 eV (i.e., it has been
accelerated across a 1 Volt potential difference).

Compute the momentum of this electron. Compare this momentum to that
of a 'typical’ Ny gas molecule at room temperature (consider the gas molecule
to have a speed of 500 m/s).

Compute this electron’s speed. At what fraction of light speed (3.00 x 108
m/s) is the electron moving?

Compute this electron’s wavelength. Compare this wavelength to the di-
ameter of a hydrogen atom (ca. 128 pm). Perform this same calculation for a
10 eV electron and a 100 eV electron. Comment on the trends in your values.
How many electron wavelengths can fit into a hydrogen atom at these different
energies?

Solution: The momentum is related to the kinetic energy by Eyin =
p?/(2m), so we find the momentum by

p = \2mEgn = \/;69-11 x 10-31kg)(1.0 eV)(1.602 x 10-19J eV~!)
= 54x107® kgms™!
The momentum of a “typical” gas phase nitrogen molecule (N3) is
p = mv=(4.650 x 1072% kg)(500 m s~ })
232x1078 kgms™?

which is about 43 times greater than the momentum of the electron. While
this speed is significant, it is still small enough to neglect relativistic effects.
The electron’s speed is

p _ 5403 x 1072 kg m s~ !
m 9.11 x 10-31kg

=5.931 x 10° m/s

vV =
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This value is 0.002, or 0.2%, of the speed of light!
The electron’s wavelength can be calculated using the de Broglie relation-
ship, so that

h h (6.626 x 1073% J.s)
A = — = = = 3 = 1.23 nm
p Vv 2mEkin 5.40 x 1025 kg m S

where we have used 5.40 x 10~2°kg m s~ ! for the momentum of the electron.
This wavelength is 9 to 10 times larger than the characteristic size of an H
atom.

For 10 eV electrons A = 0.388 nm, and for 100 eV electrons A = 123 pm.
The electron wavelength decreases as the square root of its kinetic energy and a
100 €V electron has a wavelength that is similar to the diameter of an H-atom.

E1.6) A typical value for a particle’s kinetic energy at 25 °C is 6.21 x 1072
J. Use this value of the kinetic energy to estimate the speed of spheres with
different masses; i.e.

a) ping pong ball (2.60 g)

b) a 10.0 p diameter polystyrene bead (0.300 g/cm?)

¢) a 50.0 nm radius colloidal particle of Ag (10.5 g/cm3)

d) Buckminster fullerene (Cgg) (0.720 kg/mol)

e) He (4.0 amu)

Use these speeds and masses to estimate the de Broglie wavelength of these
spheres. Comment on the trend in your wavelengths. For which, if any, of
these particles would you expect their wave properties to be important. If
the kinetic energy was decreased by 100 times, how would your wavelengths
change? Do you think that wave properties would be important under these
circumstances?

Solution: The speed and kinetic energy are related by

1
Eiin = 5mvz so that v = 1/2Egn/m

Hence we find
a) for the ping pong ball that

v =/2(6.21 x 10-21])/(2.6 x 103 kg) =2.19 x 10~ m/s

b) for the polystyrene bead we first compute its mass by

4 10 x 10°6\° 5 kg _13

and then find its speed by

v =1/2(6.21 x 10-21])/(1.57 x 10-13 kg) = 2.81 x 10~* m/s
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c) for the silver colloid particle we first compute its mass by

4 k
m = <§> m (50 x 1079)° m? (10.5 x 10° g) = 550 x 107 ¥ kg

m3

and then find its speed by

v=14/2(6.21 x'10-21J)/(5.50 x 10~ kg) =5.79 x 1072 m/s

d) for the Buckminster fullerene that

6.022 x 1023
— _ -21 =
v \/2 ( 0720 kg ) (6.21 x 10—21]) 102 m/s

e) for the He atom that

6.21 x 1021 ] 1 amu
= 2 =
v \/ ( 4 amu ) <1.660 x 10-27 kg) L e

To find the de Broglie wavelengths A, we use the fundamental relation

L
muv

By way of example, we consider the Ag colloid particle and calculate

(6.626 x 10734 J-5s) .
A= =2, 1
(5.50 x 10—18 kg) (5.79 x 10-2 m/s) 08 x 107" m

Proceeding in a like manner for each of the cases above we find
particle A /m
ping-pong ball 1.16 x 10722
polystyrene bead 1.50 x 10717

Ag particle 2.08 x 1071
fullerene, Cgo 5.43 x 10712
He atom 7.28 x 1071

These numbers suggest that it is not necessary to consider the wave nature
of these particles under these conditions; i.e., the wavelength is small compared
to the size of structures from which it might collide so that diffraction is not
important.

E1.7) Describe the photoelectric effect experiment.

a) Provide a sketch of the apparatus.

b) State the implications of the experiment.

c) Describe what is observed in the experiment and how it relates to the
experiment’s implications.
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Solution: a) Figure 1.2 (a) of the textbook gives a schematic of the pho-
toelectric effect apparatus.

b) The principal implication is that light can behave has a particle.

c¢) The two observations are that the stopping potential depends on the light
frequency and not on intensity, while the number of photoelectrons depends on
light intensity and not frequency. These results are exactly the opposite of the
behavior that one expects for a classical wave, and are exactly what would be
expected if the light behaved as a particle.

E1.8) Describe an experiment, other than the photoelectric effect experi-
ment, that demonstrates the particle nature of light. Provide a sketch of the
apparatus you would use, a clear description of what you expect to observe and
how it demonstrates the particle nature of light.

Solution: The Compton effect demonstrates the particle nature of light. In
a Compton effect measurement, light interacts with an atom which is initially
at rest. After the interaction, the light is moving away from the atom at an
angle, and the atom is also in motion. The experimentally observed angles are
described mathematically using the conservation of linear momentum and the
conservation of energy principles applicable for particles rather than waves. If
light behaved as a wave, the atomic motion would be a simple oscillation about
the initial point. The inelastic scattering of the light from the material, causing
a frequency shift (wavelength shift).

Collimating
Slits
X-ray
Source I | | Detector
B —
Scattereor N | | | 4E
~ 7
1/A¢ — “«

(€A,

|
Figure E1.8a This diagram illustrates the concepts of a Compton scattering
experiment.

The apparatus sketch indicates a beam of X-rays that are incident on a material
such as graphite. The X-rays collide with the electrons and experience a shift
in energy and angle of trajectory. The scattered X-rays are detected at a
well-defined angle using a set of lead collimating slits. The diagram on the
right has an inset that shows a schematic diagram for the scattering process.
Assuming that the particles have only kinetic energy and by requiring both the
total energy and momentum to be conserved in the scattering process, one can
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deduce at what angle the X-ray must be scattered if it loses a certain amount
of energy. The equation for this angle is given below, in terms of the shift in
the X-ray photon’s wavelength

AA:( f )(1 — cos )

MeC

Note that backscattering (at the angle 8 = 7) gives the largest effect. The
figures shown below give the spectrum of an X-ray source whose radiation is
scattered from a graphite crystal. The data on the left shows photographic
images of the scattered X-ray source at three different angles. Densitometer
tracings of the spectral intensities are shown on the right side. The data show
a clear red shift of some of the spectral lines with increasing scattering angle.
Not all of the X-ray lines scatter inelastically. The elastically scattered lines
do not shift their energy.

k\.n/ \///‘

Figure E8.1b These data for the scattering of X-rays from graphite are taken from
Dumond, Rev. Mod. Phys. 5 (1933) 1.

See Quantum Physics of Atoms, Molecules, Solids, Nuclei and: Particles by R.
Eisberg and R. Resnick (Wiley, Ny, 1974) for more discussion of the Compton
Effect.

NOTE: Other answers to this question are possible.

E1.9) Consider the diffraction of photons, electrons, and neutrons from an
aperture with diameter d. Consider the case where d is 1 cm and the case
where it is 1077 cm.

(a) If you direct a light beam onto the aperture, how large must the wave-
length be so that diffraction can be observed? What is the frequency of the
light you found?

(b) If you direct an electron beam onto the aperture, how large must the
speed of the electrons be so that diffraction can be observed?
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(c) We assume that the de Broglie relationship holds not only for electrons,
but also for any particle. How large must the speed of the neutrons be for the
aperture to diffract a neutron beam?

Do not be disturbed if the answers to these exercises are not experimentally
feasible. The problems should help clarify the content of Equations (1.7) and
(1.9).

Solution: Diffraction occurs when the wavelength of the wave is approxi-
mately the same as the size of the aperture. Considering the size of the aperture
as 1 cm and 10~7 cm,

a) For an aperture of 1 cm, the wavelength is 1 cm, and the corresponding
frequency is 2.998 x 10° cm s™! / 1 cm= 2.998 x 10'° s~!. For a 1077
cm aperture, the wavelength is 107 cm, and the corresponding frequency is
2.998x 10'° cm s71/1077 ecm = 2.998 x 107 s~ 1.

b) We need to find the electron’s wavelength through the de Broglie re-
lationship, A = h/(mv). For a 1 cm wavelength v = (6.626 x 10734 J
s)/(9.11 1073 kg) (0.01 m) = 7.273x 1072 cm s~ L. For a 1077 cm wavelength
v = (6.626 x 1073% J 5)/(9.11 x 1073! kg) (1072 m) = 7.273 x 10° cm s~ 1.

¢) We need to find the neutrons’s wavelength through the de Broglie rela-
tionship, A = h/(mwv). For a 1 cm wavelength v = (6.626 x 10734 J s)/(1.675 x
10727 kg) (0.01 m) = 3.956 x 107° cm s~!. For a 107 cm wavelength
v =(6.626 x 10734 J 5)/(1.675 x 10~27 kg) (10~° m) = 3.956 x 10? cm s ..

E1.10) Describe an experiment that demonstrates the wave nature of mat-
ter. Make a sketch that illustrates your observations; i.e., measured data.
Draw a sketch of an experimental apparatus that shows the essential com-
ponents needed in making such a measurement. Explain in words how this
experiment demonstrates the wave nature of matter.

Solution: Low energy electron and/or neutron diffraction experiments
both are examples of the wave nature of particles. In both cases a beam of
the particles is focused onto a target, which diffracts the particles towards an
angle scannable detector. The reflected particle intensity depends on angle be-
cause the wavelength of the particle is of the same magnitude as the spacing
between atoms. The schematic diagram shows an electron beam impinging on
a Ni crystal and diffracting. By scanning the detector over different angles the
electron current (called the collector current below) can be measured.
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electron
beam

Ni crystal

Figure E1.10a- The diagram aims to illustrate that a beam of electrons impinges on
a nickel crystal. Rather than simple specular reflection, the electron beam diffracts
from the surface.

Davisson and Germer reflected a beam of electrons off of a crystalline Ni target
and observed that the electrons diffracted; i.e., produced an intensity pattern
that varied in space instead of falling off monotonically from the specular an-
gle. The figure shows data that they collected as a function of bias potential at
different scattering angles. For the different detector angles, the peak intensity
occurs at different incident electron wavelengths (hence the bombarding po-
tential). Classical particles would not show such a dependence. Diffraction is
a wave characteristic and this observation demonstrates that particles, namely
electrons, can exhibit wave properties.

prp——

COLLECTOR CURRENT

~—~, es"
N\ 70"

&

= .~ Tty

4=t Iy \-0—-0—-.
15

85 20 95 100 105 10 1S 120 75 130 OGS
BOMBARDING POTENTIAL

Figure E1.10b. Collector current (detector current) vs. bombarding potential
(which determines the incident electron’s wavelength) showing plane grating beams
near grazing in {110}-azimuth. Taken from Davisson and Germer, Phys. Rev. 30

(1927) 705.

The experiment reported by C. Davisson and L. H. Germer (Phys. Rev. 30
(1927) 705) also provides an interesting example in serendipity. These initial
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investigations did not reveal much structure in the diffraction, however, they
inadvertently heated the sample, which caused the Ni to recrystallize into larger
crystallites upon cooling. They were observant enough to recognize what had
occurred. The Figure shows the data that they obtained before and after the
"accident"; i.e., before and after crystal growth has occurred.

SCATTERING OF 7% VOLT ELECTRONS FROM
A BLOCK OF NICKEL (MANY SMALL CRYSTALS )

SCATTERING OF 75 VOLT ELECTRONS FROM
SEVERAL LARGE NICKEL CRYSTALS

Figure E1.10c —The scattered intensity pattern after annealing (lower panel) reveals
substructure associated with diffraction.

E1.11) If photons are particles they have momentum. Compute the mo-
mentum of a 590 nm photon. Compare this momentum to that of a Na atom
moving at a speed of 900 m/s, which is a typical value at 1200 °C. Assume that
590 nm photons collide head on with the sodium atom so that the momentum
exchange is twice the photon momentum, how many photons are needed to
’stop’ the sodium atom?

Solution: Again we employ the de Broglie relationship, p = h/ A, and find
_ that the momentum of a 590 nm photon is

6.626 x 10734 J s
590 x 1072 m

D590 = =1123x 100 kgms™!
This photon momentum should be compared with the sodium atom’s momen-
tum, which is

(22.989 x 1073
PNa =

mkg> (900 I'Il/S) = 3.436 x 10_23 kg m S_1

Thus interactions with about 30,600 photons would be required to slow a
sodium atom to a stop. Processes of this sort are used in the cooling and
trapping of atoms (see Nobel Prize of Physics, 1997).
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E1.12) Imagine performing a photoelectron experiment on single hydrogen
atoms, in a chamber where the atoms are surrounded by a thousand electron
detectors (numbered ed! through ed1000), so that all sides (all 47 steradians)
are sensed and the detected electron’s position can be reported. In more tech-
nical language, imagine measuring the full angular distribution of photoejected
electrons. In addition, assume that the hydrogen atoms are in their ground
electronic state, and that the photons irradiate the sample isotropically with
an energy much higher than the ionization energy of the hydrogen atom.

(a) If the experiment is performed on a single hydrogen atom, what is the
probability that ed375 detects the photoejected electron? If the experiment is
performed on one-hundred hydrogen atoms in succession, what is the probabil-
ity that ed375 detects the first photoejected electron? What is the probability
that ed375 detects any photoelectron? '

(b) Imagine a related experiment in which hydrogen atoms that are initially
excited are injected into a chamber and they emit light. Perform experiments
of the same type as in part (a) but detecting photons instead of electrons. Does
your analysis change? Explain!

Solution: a) The photoelectrons should be emitted with equal probability
into all 47 steradians. The probability of ed375 detecting the photoejected
electron or the first electron is thus 1/1000. If done 100 times in succession,
the probability is now 100 (1/1000) = 0.010 for ed375 to detect any electron.

b) Assuming that photoelectrons and photons are both emitted isotropically
(independently of direction) there is no change in the analysis.

1.2 Problems

P1.1) Consider the following data, taken from O. W. Richardson and K. T.
Compton, Phil. Mag. 24 (1913) 575, for the photoemission of electrons from
a metal substrate. FEy;, is the kinetic energy of the photoelectrons and A is
the wavelength of the light. Analyze these data using a least squares analysis.
Find the work function E, ., of the metal and determine a value for Planck’s
constant. The work function is the minimum energy that is needed to remove an
electron from the metal and place it at the detector some macroscopic distance

away.

Sodium Copper

Eyin/eV A/em Eyin/eV A/cm
0.60 43.6 x 1076 0.35 26.0 x 106
1.00 36.6 x 107° 0.48 25.4 x 106
1.50 31.3 x 107 0.73 23.0 x 10~
2.30 25.4 x 10~ 1.02 21.0 x 10~6
3.00 21.0 x 10~ 1.25 20.0 x 106

Solutions: In analogy to the discussion in 1.2.2.5, we plot the kinetic energy
versus the photon frequency v = ¢/A. We begin by constructing a data table



