DANIEL ZELTERMAN

CAMBRIDGE




Applied Linear Models
with SAS

Daniel Zelterman

Yale University

BH CAMBRIDGE

%P UNIVERSITY PRESS




CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,
Sdo Paulo, Delhi, Dubai, Tokyo

Cambridge University Press
32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org
Information on this title: www.cambridge.org/9780521761598

© Daniel Zelterman 2010

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2010
Printed in the United States of America
A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication data

Zelterman, Daniel.
Applied linear models with SAS / Daniel Zelterman.
p. cm.
Includes index.
ISBN  978-0-521-76159-8 (hardback)
1. Linear regression. 2. Linear models (Statistics) 3. SAS (Computer program
language) I Title.
QA278.2.Z45 2010
519.5'35-dc22 2009053487

ISBN 978-0-521-76159-8 Hardback

Cambridge University Press has no responsibility for the
persistence or accuracy of URLs for external or third-party Internet
Web sites referred to in this publication and does not guarantee that
any content on such Web sites is, or will remain, accurate or
appropriate.

Copyright page continues after page xiii.



Applied Linear Models with SAS

This textbook for a second course in basic statistics for undergraduates or first-year graduate
students introduces linear regression models and describes other linear models including Poisson
regression, logistic regression, proportional hazards regression, and nonparametric regression.
Numerous examples drawn from the news and current events with an emphasis on health issues
illustrate these concepts.

Assuming only a pre-calculus background, the author keeps equations to a minimum and
demonstrates all computations using SAS. Most of the programs and output are displayed in a
self-contained way, with an emphasis on the interpretation of the output in terms of how it relates
to the motivating example. Plenty of exercises conclude every chapter. All of the datasets and SAS
programs are available from the book’s Web site, along with other ancillary material.

Dr. Daniel Zelterman is Professor of Epidemiology and Public Health in the Division of Bio-
statistics at Yale University. His application areas include work in genetics, HIV, and cancer. Before
moving to Yale in 1995, he was on the faculty of the University of Minnesota and at the State
University of New York at Albany. He is an elected Fellow of the American Statistical Association.

He serves as associate editor of Biometrics and other statistical journals. He is the author of Models
for Discrete Data (1999), Advanced Log-Linear Models Using SAS (2002), Discrete Distributions:
Application in the Health Sciences (2004), and Models for Discrete Data: 2nd Edition (2006). In his
spare time he plays the bassoon in orchestral groups and has backpacked hundreds of miles of the
Appalachian Trail.




Preface

Linear models are a powerful and useful set of methods in a large number of settings.
Very briefly, there is some outcome measurement that is very important to us and we
want to explain variations in its values in terms of other measurements in the data.
The heights of several trees can be explained in terms of the trees’ ages, for example.
It is not a straight line relationship, of course, but knowledge of a tree’s age offers
us a large amount of explanatory value. We might also want to take into account
the effects of measurements on the amount of light, water, nutrients, and weather
conditions experienced by each tree. Some of these measurements will have greater
explanatory value than others and we may want to quantify the relative usefulness
of these different measures. Even after we are given all of this information, some
trees will appear to thrive and others will remain stunted, when all are subjected to
identical conditions. This variability is the whole reason for statistics existing as a
scientific discipline. We usually try to avoid the use of the word “prediction” because
this assumes that there is a cause-and-effect relationship. A tree’s age does not directly
cause it to grow, for example, but rather, a cumulative process associated with many
environmental factors results in increasing height and continued survival. The best
estimate we can make is a statement about the behavior of the average tree under
identical conditions.

Many of my students go on to work in the pharmaceutical or health-care industry
after graduating with a masters degree. Consequently, the choice of examples has a
decidedly health/medical bias. We expect our students to be useful to their employers
the day they leave our program so there is not a lot of time to spend on advanced
theory that is not directly applicable. Not all of the examples are from the health
sciences. Diverse examples such as the number of lottery winners and temperatures
in various US cities are part of our common knowledge. Such examples do not need
a lengthy explanation for the reader to appreciate many of the aspects of the data
being presented.

How is this book different? The mathematical content and notation are kept to
an absolute minimum. To paraphrase the noted physicist Steven Hawking, who



Preface

has written extensively for the popular audience, every equation loses half of your
audience. There is really no need for formulas and their derivations in a book of
this type if we rely on the computer to calculate quantities of interest. Long gone are
the days of doing statistics with calculators or on the back of an envelope. Students
of mathematical statistics should be able to provide the derivations of the formulas
but they represent a very different audience. All of the important formulas are
programmed in software so there is no need for the general user to know these.

The three important skills needed by a well-educated student of applied statistics
are
1. Recognize the appropriate method needed in a given setting.

2. Have the necessary computer skills to perform the analysis.
3. Beable to interpret the output and draw conclusions in terms of the original data.

This book gives examples to introduce the reader to a variety of commonly
encountered settings and provides guidance through these to complete these three
goals. Not all possible situations can be described, of course, but the chosen settings
include a broad survey of the type of problems the student of applied statistics is
likely to run into.

What do I ask of my readers? We still need to use a lot of mathematical concepts
such as the connection between a linear equation and drawing the lineon X — Y
coordinates. There will be algebra and special functions such as square roots and
logarithms. Logarithms, while we are on the subject, are always to the base e (=2.718)
and not base 10.

We will also need a nodding acquaintance with the concepts of calculus. Many of
us may have taken calculus in college, a long time ago, and not had much need to use it
in the years since then. Perhaps we intentionally chose a course of study that avoided
abstract mathematics. Even so, calculus represents an important and useful tool. The
definition of the derivative of a function (What does this new function represent?)
and integral (What does this new function represent?) are needed although we will
never need to actually find a derivative or an integral. The necessary refresher to
these important concepts is given in Section 1.4.

Also helpful is a previous course in statistics. The reader should be familiar with the
mean and standard deviation, normal and binomial distributions, and hypothesis
tests in general and the chi-squared and t-tests specifically. These important concepts
are reviewed in Chapter 2 but an appreciation of these important ideas is almost a
full course in itself. There is a large reliance on p-values in scientific research so it is
important to know exactly what these represent.

There are a number of excellent general-purpose statistical packages available. We
have chosen to illustrate our examples using SAS because of its wide acceptance and
use in many industries but especially health care and pharmaceutical. Most of the
examples given here are small, to emphasize interpretation and encourage practice.
These datasets could be examined by most software packages. SAS, however, is
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capable of handling huge datasets so the skills learned here can easily be used if and
when much larger projects are encountered later.

The reader should already have some familiarity with running SAS on a computer.
This would include using the editor to change the program, submitting the program,
and retrieving and then printing the output. There are also popular point-and-click
approaches to data analysis. While these are quick and acceptable, their ease of use
comes with the price of not always being able to repeat the analysis because of the
lack of a printed record of the steps that were taken. Data analysis, then, should be
reproducible.

We will review some of the basics of SAS but a little hand-holding will prevent
some of the agonizing frustrations that can occur when first starting out. Running the
computer and, more generally, doing the exercises in this book are a very necessary
part of learning statistics. Just as you cannot learn to play the piano simply by
reading a book, statistical expertise, and the accompanying computer skills, can only
be obtained through hours of active participation in the relevant act. Again, much
like the piano, the instrument is not damaged by playing a wrong note. Nobody will
laugh at you if you try something truly outlandish on the computer either. Perhaps
something better will come of a new look at a familiar setting. Similarly, the reader is
encouraged to look at the data and try a variety of different ways of looking, plotting,
modeling, transforming, and manipulating. Unlike a mathematical problem with
only one correct solution (contrary to many of our preconceived notions), there is
often a lot of flexibility in the way statistics can be applied to summarize a set of data.
As with yet another analogy to music, there are many ways to play the same song.
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Introduction

We are surrounded by data. With a tap at a computer keyboard, we have access
to more than we could possibly absorb in a lifetime. But is this data the same as
information? How do we get from numbers to understanding? How do we iden-
tify simplifying trends — but also find exceptions to the rule? The computers that
provide access to the data also provide the tools to answer these questions. Unfor-
tunately, owning a hammer does not enable us to build a fine house. It takes expe-
rience using the tools, knowing when they are appropriate, and also knowing their
limitations.

The study of statistics provides the tools to create understanding out of raw data.
Expertise comes with experience, of course. We need equal amounts of theory (in
the form of statistical tools), technical skills (at the computer), and critical analysis
(identifying the limitations of various methods for each setting). A lack of one of
these cannot be made up by the other two.

This chapter provides a review of statistics in general, along with the mathematical
and statistical prerequisites that will be used in subsequent chapters. Even more
broadly, the reader will be reminded of the larger picture. It is very easy to learn
many statistical methods only to lose sight of the point of it all.

1.1 What Is Statistics?

In an effort to present a lot of mathematical formulas, we sometimes lose track of
the central idea of the discipline. It is important to remember the big picture when
we get too close to the subject.

Let us consider a vast wall that separates our lives from the place where the
information resides. It is impossible to see over or around this wall, but every now
and then we have the good fortune of having some pieces of data thrown over
to us. On the basis of this fragmentary sampled data, we are supposed to infer the
composition of the remainder on the other side. This is the aim of statistical inference.
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The population is usually vast and infinite, whereas the sample is just a handful of
numbers.

In statistical inference we infer properties of the population from the sample.

There is an enormous possibility for error, of course. If all of the left-handed people
I know also have artistic ability, am I allowed to generalize this to a statement that
all left-handed people are artistic? I may not know very many left-handed people. In
this case I do not have much data to make my claim, and my statement should reflect
a large possibility of error. Maybe most of my friends are also artists. In this case we
say that the sampled data is biased because it contains more artists than would be
found in a representative sample of the population.

The population in this example is the totality of all left-handed people. Maybe the
population should be all people, if we also want to show that artistic ability is greater
in left-handed people than in right-handed people. We can’t possibly measure such
a large group. Instead, we must resign ourselves to the observed or empirical data
made up of the people we know. This is called a convenience sample because it is not
really random and may not be representative.

Consider next the separate concepts of sample and population for numerically
valued data. The sample average is a number that we use to infer the value of the
population mean. The average of several numbers is itself a number that we obtain.
The population mean, however, is on the other side of the imaginary wall and is
not observable. In fact, the population mean is almost an unknowable quantity that
could not be observed even after a lifetime of study. Fortunately, statistical inference
allows us to make statements about the population mean on the basis of the sample
average. Sometimes we forget that this inference is taking place and will confuse the
sample statistic with the population attribute.

Statistics are functions of the sampled data. Parameters are properties of the
population.

Often the sampled data comes at great expense and through personal hardship, as
in the case of clinical trials of new therapies for life-threatening diseases. In a clinical
trial involving cancer, for example, costs are typically many thousands of dollars
per patient enrolled. Innovative therapies can easily cost ten times that amount.
Sometimes the most important data consists of a single number, such as how long
the patient lived, recorded only after the patient loses the fight with his or her disease.

Sometimes we attempt to collect all of the data, as in the case of a census. The
U.S. Constitution specifically mandates that a complete census of the population be
performed every ten years.! The writers of the Constitution knew that in order to

! Article 1, Section 2 reads, in part: “Representatives and direct Taxes shall be apportioned among the several
States which may be included within this Union, according to their respective Numbers, which shall be
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have a representative democracy and a fair tax system, we also need to know where the
people live and work. The composition of the House of Representatives is based on
the decennial census. Locally, communities need to know about population shifts to
plan for schools and roads. Despite the importance of the census data, there continues
to be controversy on how to identify and count certain segments of the population,
including the homeless, prison inmates, migrant workers, college students, and
foreign persons living in the country without appropriate documentation.

Statistical inference is the process of generalizing from a sample of data to the
larger population. The sample average is a simple statistic that immediately comes
to mind. The Student t-test is the principal method used to make inferences about
the population mean on the basis of the sample average. We review this method in
Section 2.5. The sample median is the value at which half of the sample is above and
half is below. The median is discussed in Chapter 7.

The standard deviation measures how far individual observations deviate from
their average.

The sample standard deviation allows us to estimate the scale of variability in the
population. On the basis of the normal distribution (Section 2.3), we usually expect
about 68% of the population to appear within one standard deviation (above or
below) of the mean. Similarly, about 95% of the population should occur within two
standard deviations of the population mean.

The standard error measures the sampling variability of the mean.

A commonly used measure related to the standard deviation is the standard error,
also called the standard error of the mean and often abbreviated SEM. These two
similar-sounding quantities refer to very different measures. The standard error
estimates the standard deviation associated with the sample average. As the sample
size increases, the standard deviation (which refers to individuals in the population)
should not appreciably change. On the other hand, a large sample size is associated
with a precise estimate of the population mean as a consequence of a small standard
error. This relationship provides the incentive for larger sample sizes, allowing us to
estimate the population mean more accurately. The relationship is

Standard deviation

Standard error = -
JSample size

determined by adding to the whole Number of free Persons, including those bound to Service for a Term
of Years, and excluding Indians not taxed, three fifths of all other Persons. The actual Enumeration shall
be made within three Years after the first Meeting of the Congress of the United States, and within every
subsequent Term of ten Years, in such Manner as they shall by Law direct.”
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Consider a simple example. We want to measure the heights of a group of people.
There will always be tall people, and there will always be short people, so changing the
sample size does not appreciably alter the standard deviation of the data. Individual
variations will always be observed. If we were interested in estimating the average
height, then the standard error will decrease with an increase in the sample size (at a
rate of 1/,/sample size), motivating the use of ever-larger samples. The average will
be measured with greater precision, and this precision is described in terms of the
standard error. Similarly, if we want to measure the average with twice the precision,
then we will need a sample size four times larger.

Another commonly used term associated with the standard deviation is variance.
The relationship between the variance and the standard deviation is

Variance = (Standard deviation)?

The standard deviation and variance are obtained in SAS using proc
univariate, for example. The formula appears often, and the reader should be
familiar with it, even though its value will be calculated using a computer.

Given observed sample values x;, x,, ..., x,, we compute the sample variance
from

. 1 —
s?= sample variance = = Z (x; —%)?, (1.1)
1

where X is the average of the observed values.

This estimate is often denoted by the symbol s2. Similarly, the estimated sample
standard deviation s is the square root of this estimator. Intuitively, we see that (1.1)
averages the squared difference between each observation and the sample average,
except that the denominator is one less than the sample size. The “n — 1” term is
the degrees of freedom for this expression and is described in Sections 2.5 and 2.7.

1.2 Statistics in the News: The Weather Map

Sometimes it is possible to be overwhelmed with too much information. The business
section of the newspaper is filled with stock prices, and the sports section has a wealth
of scores and data on athletic endeavors. The business section frequently has several
graphs and charts illustrating trends, rates, and prices. The sports pages have yet to
catch up with the business section in terms of aids for the reader.

As an excellent way to summarize and display a huge amount of information,
we reproduce the U.S. weather map from October 27, 2008, in Figure 1.1. There
are several levels of information depicted here, all overlaid on top of one another.
First we recognize the geographic-political map indicating the shorelines and state
boundaries. The large map at the top provides the details of that day’s weather. The
large Hs indicate the locations of high barometric pressure centers. Regions with
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Figure 1.1  The U.S. weather map for October 27, 2008: Observed, expected, and residual data. Courtesy
of Pennsylvania State University, Department of Meteorology.



