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Preface

What is information? How do we quantify or measure the amount of information
that is present in a file of data, or a string of text? How do we encode the information
so that it can be stored efficiently, or transmitted reliably?

The main concepts and principles of information theory were developed by Claude E.
Shannon in the 1940s. Yet only now, and thanks to the emergence of the information
age and digital communication, are the ideas of information theory being looked at
again in a new light. Because of information theory and the results arising from
coding theory we now know how to quantify information, how we can efficiently
encode it and how reliably we can transmit it.

This book introduces the main concepts behind how we model information sources
and channels, how we code sources for efficient storage and transmission, and the
fundamentals of coding theory and applications to state-of-the-art error correcting
and error detecting codes.

This textbook has been written for upper level undergraduate students and graduate
students in mathematics, engineering and computer science. Most of the material
presented in this text was developed over many years at The University of West-
ern Australia in the unit Information Theory and Coding 314, which was a core unit
for students majoring in Communications and Electrical and Electronic Engineering,
and was a unit offered to students enrolled in the Master of Engineering by Course-
work and Dissertation in the Intelligent Information Processing Systems course.

The number of books on the market dealing with information theory and coding has
been on the rise over the past five years. However, very few, if any, of these books
have been able to cover the fundamentals of the theory without losing the reader in
the complex mathematical abstractions. And fewer books are able to provide the
important theoretical framework when discussing the algorithms and implementa-
tion details of modern coding systems. This book does not abandon the theoretical
foundations of information and coding theory and presents working algorithms and
implementations which can be used to fabricate and design real systems. The main
emphasis is on the underlying concepts that govern information theory and the nec-
essary mathematical background that describe modern coding systems. One of the
strengths of the book are the many worked examples that appear throughout the book
that allow the reader to immediately understand the concept being explained, or the
algorithm being described. These are backed up by fairly comprehensive exercise
sets at the end of each chapter (including exercises identified by an * which are more
advanced or challenging).
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The material in the book has been selected for completeness and to present a balanced
coverage. There is discussion of cascading of information channels and additivity
of information which is rarely found in modern texts. Arithmetic coding is fully
explained with both worked examples for encoding and decoding. The connection
between coding of extensions and Markov modelling is clearly established (this is
usually not apparent in other textbooks). Three complete chapters are devoted to
block codes for error detection and correction. A large part of these chapters deals
with an exposition of the concepts from abstract algebra that underpin the design of
these codes. We decided that this material should form part of the main text (rather
than be relegated to an appendix) to emphasise the importance of understanding the
mathematics of these and other advanced coding strategies.

Chapter 1 introduces the concepts of entropy and information sources and explains
how information sources are modelled. In Chapter 2 this analysis is extended to
information channels where the concept of mutual information is introduced and
channel capacity is discussed. Chapter 3 covers source coding for efficient storage
and transmission with an introduction to the theory and main concepts, a discussion
of Shannon’s Noiseless Coding Theorem and details of the Huffman and arithmetic
coding algorithms. Chapter 4 provides the basic principles behind the various com-
pression algorithms including run-length coding and dictionary coders. Chapter 5
introduces the fundamental principles of channel coding, the importance of the Ham-
ming distance in the analysis and design of codes and a statement of what Shannon’s
Fundamental Coding Theorem tells us we can do with channel codes. Chapter 6
introduces the algebraic concepts of groups, rings, fields and linear spaces over the
binary field and introduces binary block codes. Chapter 7 provides the details of the
theory of rings of polynomials and cyclic codes and describes how to analyse and
design various linear cyclic codes including Hamming codes, Cyclic Redundancy
Codes and Reed-Muller codes. Chapter 8 deals with burst-correcting codes and de-
scribes the design of Fire codes, BCH codes and Reed-Solomon codes. Chapter 9
completes the discussion on channel coding by describing the convolutional encoder,
decoding of convolutional codes, trellis modulation and Turbo codes.

This book can be used as a textbook for a one semester undergraduate course in in-
formation theory and source coding (all of Chapters I to 4), a one semester graduate
course in coding theory (all of Chapters 5 to 9) or as part of a one semester under-
graduate course in communications systems covering information theory and coding
(selected material from Chapters 1, 2, 3,5, 6 and 7).

We would like to thank Sean Davey and Nishith Arora for their help with the ISTEX
formatting of the manuscript. We would also like to thank Ken Rosen for his review
of our draft manuscript and his many helpful suggestions and Sunil Nair from CRC
Press for encouraging us to write this book in the first place!

Our examples on arithmetic coding were greatly facilitated by the use of the conver-
sion calculator (which is one of the few that can handle fractions!) made available
by www.math.com.
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The manuscript was written in ISTEX and we are indebted to the open source software
community for developing such a powerful text processing environment. We are
especially grateful to the developers of LyX (www.lyx.org) for making writing the
document that much more enjoyable and to the makers of xfig (www.xfig.org) for
providing such an easy-to-use drawing package.

Roberto Togneri
Chris deSilva
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Chapter 1

Entropy and Information

1.1 Structure

Structure is a concept of which we all have an intuitive understanding. However,
it is not easy to articulate that understanding and give a precise definition of what
structure is. We might try to explain structure in terms of such things as regularity,
predictability, symmetry and permanence. We might also try to describe what struc-
ture is not, using terms such as featureless, random, chaotic, transient and aleatory.

Part of the problem of trying to define structure is that there are many different kinds
of behaviour and phenomena which might be described as structured, and finding a
definition that covers all of them is very difficult.

Consider the distribution of the stars in the night sky. Overall, it would appear that
this distribution is random, without any structure. Yet people have found patterns in
the stars and imposed a structure on the distribution by naming constellations.

Again, consider what would happen if you took the pixels on the screen of your
computer when it was showing a complicated and colourful scene and strung them
out in a single row. The distribution of colours in this single row of pixels would
appear to be quite arbitrary, yet the complicated pattern of the two-dimensional array
of pixels would still be there.

These two examples illustrate the point that we must distinguish between the pres-
ence of structure and our perception of structure. In the case of the constellations,
the structure is imposed by our brains. In the case of the picture on our computer
screen, we can only see the pattern if the pixels are arranged in a certain way.

Structure relates to the way in which things are put together, the way in which the
parts make up the whole. Yet there is a difference between the structure of, say, a
bridge and that of a piece of music. The parts of the Golden Gate Bridge or the
Sydney Harbour Bridge are solid and fixed in relation to one another. Seeing one
part of the bridge gives you a good idea of what the rest of it looks like.

The structure of pieces of music is quite different. The notes of a melody can be
arranged according to the whim or the genius of the composer. Having heard part
of the melody you cannot be sure of what the next note is going to be, leave alone
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any other part of the melody. In fact, pieces of music often have a complicated,
multi-layered structure, which is not obvious to the casual listener.

In this book, we are going to be concerned with things that have structure. The kinds
of structure we will be concerned with will be like the structure of pieces of music.
They will not be fixed and obvious.

1.2 Structure in Randomness

Structure may be present in phenomena that appear to be random. When it is present,
it makes the phenomena more predictable. Nevertheless, the fact that randomness is
present means that we have to talk about the phenomena in terms of probabilities.

Let us consider a very simple example of how structure can make a random phe-
nomenon more predictable. Suppose we have a fair die. The probability of any face
coming up when the die is thrown is 1/6. In this case, it is not possible to predict
which face will come up more than one-sixth of the time, on average.

On the other hand, if we have a die that has been biased, this introduces some struc-
ture into the situation. Suppose that the biasing has the effect of making the probabil-
ity of the face with six spots coming up 55/100, the probability of the face with one
spot coming up 5/100 and the probability of any other face coming up 1/10. Then
the prediction that the face with six spots will come up will be right more than half
the time, on average.

Another example of structure in randomness that facilitates prediction arises from
phenomena that are correlated. If we have information about one of the phenomena,
we can make predictions about the other. For example, we know that the IQ of iden-
tical twins is highly correlated. In general, we cannot make any reliable prediction
about the 1Q of one of a pair of twins. But if we know the 1Q of one twin, we can
make a reliable prediction of the 1Q of the other.

In order to talk about structure in randomness in quantitative terms, we need to use
probability theory.

1.3 First Concepts of Probability Theory

To describe a phenomenon in terms of probability theory, we need to define a set
of outcomes, which is called the sample space. For the present, we will restrict
consideration to sample spaces which are finite sets.
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DEFINITION 1.1 Probability Distribution A probability distribution on a
sample space S = {s1,82,...,8n} is a function P that assigns a probability
to each outcome in the sample space. P is a map from S to the unit interval,
P : S — [0, 1], which must satisfy Z,,il P(s;) = 1.

DEFINITION 1.2 Events  Events are subsets of the sample space.

We can extend a probability distribution P from S to the set of all subsets of S,
which we denote by P(S), by setting P(E) = > _ .. P(s) forany E € P(S). Note
that P(0)) = 0.

An event whose probability is 0 is impossible and an event whose probability is 1 is
certain to occur.

If £ and F are eventsand EN F = ) then P(EU F) = P(E) + P(F).

DEFINITION 1.3 Expected Value  If S = {s1,$2,...,sn} is a sample space
with probability distribution P, and f : S — V' isa funcfiorz from the sample space
to a vector space V', the expected value of f is f = Zf\:l P(s;)f(si).

NOTE We will often have equations that involve summation over the elements

of a finite set. In the equations above, the set has been S = {s1,$2,...,sny} and
the summation has been denoted by Zfil In other places in the text we will denote
such summations simply by > .

1.4 Surprise and Entropy

In everyday life, events can surprise us. Usually, the more unlikely or unexpected
an event is, the more surprising it is. We can quantify this idea using a probability
distribution.

DEFINITION 1.4 Surprise  If E is an event in a sample space S, we define the
surprise of E to be s(E) = —log(P(E)) = log(1/P(E)).

Events for which P(E) = 1, which are certain to occur, have zero surprise, as we
would expect, and events that are impossible, that is, for which P(E) = 0, have

infinite surprise.
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Defining the surprise as the negative logarithm of the probability not only gives us the
appropriate limiting values as the probability tends to 0 or 1, it also makes surprise
additive. If several independent events occur in succession, the total surprise they
generate is the sum of their individual surprises.

DEFINITION 1.5 Entropy We can restrict the surprise to the sample space
and consider it to be a function from the sample space to the real numbers. The
expected value of the surprise is the entropy of the probability distribution.

If the sample space is S = {s1, s2,...,snx}, with probability distribution P, the
entropy of the probability distribution is given by
N
H(P) == P(si) log(P(sy)). (1.1)

i=1

The concept of entropy was introduced into thermodynamics in the nineteenth cen-
tury. It was considered to be a measure of the extent to which a system was disor-
dered. The tendency of systems to become more disordered over time is described by
the Second Law of Thermodynamics, which states that the entropy of a system can-
not spontaneously decrease. In the 1940’s, Shannon [6] introduced the concept into
communications theory and founded the subject of information theory. It was then
realised that entropy is a property of any stochastic system and the concept is now
used widely in many fields. Today, information theory (as described in books such
as [1], [2], [3]) is still principally concerned with communications systems, but there
are widespread applications in statistics, information processing and computing (see

(2], [4]. [5D).

Let us consider some examples of probability distributions and see how the entropy is
related to predictability. First, let us note the form of the function s(p) = —plog(p)
where 0 < p < 1 and log denotes the logarithm to base 2. (The actual base does not
matter, but we shall be using base 2 throughout the rest of this book, so we may as
well start here.) The graph of this function is shown in Figure 1.1.

Note that —plog(p) approaches 0 as p tends to 0 and also as p tends to 1. This
means that outcomes that are almost certain to occur and outcomes that are unlikely
to occur both contribute little to the entropy. Outcomes whose probability is close to
0.4 make a comparatively large contribution to the entropy.

EXAMPLE 1.1
S = {s1, 82} with P(s1) = 0.5 = P(s3). The entropy is
H(P)=—(0.5)(—-1) — (0.5)(-1) = 1.

In this case, s; and s» are equally likely to occur and the situation is as unpredictable
as it can be.
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FIGURE 1.1
The graph of —plog(p).

EXAMPLE 1.2
S = {s1, 82} with P(s;1) = 0.96875, and P(s) = 0.03125. The entropy is

H(P) = —(0.96875)(—0.0444) — (0.03125)(—=5) ~ 0.20.

In this case, the situation is more predictable, with s; more than thirty times more
likely to occur than s». The entropy is close to zero.

EXAMPLE 1.3

S = {s1,s2} with P(s;) = 1.0, and P(s3) = 0.0. Using the convention that
0log(0) = 0, the entropy is 0. The situation is entirely predictable, as s; always
occurs.

EXAMPLE 14

S = {s1, 82,53, 84,85,5}, with P(s;) = 1/6 fori = 1,2,...,6. The entropy is
2.585 and the situation is as unpredictable as it can be. I

EXAMPLE 1.5
S = {s1, 82,83, 84, 85, 86 }» with P(s1) = 0.995 P(s;) = 0.001 fori = 2,3,...,6.
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The entropy is 0.057 and the situation is fairly predictable as s; will occur far more
frequently than any other outcome.

EXAMPLE 1.6

S = {s1, 82,583,584, 85,8}, with P(s;) = 0.498 = P(sy) P(s;) = 0.001 for
t = 3,4,...,6. The entropy is 1.042 and the situation is about as predictable as in
Example 1.1 above, with outcomes s; and sy equally likely to occur and the others
very unlikely to occur.

Roughly speaking, a system whose entropy is E is about as unpredictable as a system
with 27 equally likely outcomes.

1.5 Units of Entropy

The units in which entropy is measured depend on the base of the logarithms used
to calculate it. If we use logarithms to the base 2, then the unit is the bit. If we
use natural logarithms (base e), the entropy is measured in natural units, sometimes
referred to as nits. Converting between the different units is simple.

PROPOSITION 1.1
If H, is the entropy of a probability distribution measured using natural logarithms,
and H,. is the entropy of the same probability distribution measured using logarithms
to the base r, then .

H, = 3
" n(r)

. (1.2)

PROOF  Let the sample space be S = {sy,s2,...,sn}, with probability distri-
bution P. For any positive number z,

In(z) = In(r) log, (). (1.3)

It follows that
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~ 2N, P(si) In(P(sy))
In(r)

_ H.(P)
" In(r) (4.4

1.6 The Minimum and Maximum Values of Entropy

If we have a sample space S with N elements, and probability distribution P on S,
it is convenient to denote the probability of s; € S by p,. We can construct a vector
in RN consisting of the probabilities:

p1
p2

PN

Because the probabilities have to add up to unity, the set of all probability distribu-
tions forms a simplex in RN, namely

L\.
K:{pERN:Zp,'zl}.

=1

We can consider the entropy to be a function defined on this simplex. Since it is
a continuous function, extreme values will occur at the vertices of this simplex, at
points where all except one of the probabilities are zero. If p, is a vertex, then the
entropy there will be

H(py) = (N —1).0.1og(0) + 1.log(1).

The logarithm of zero is not defined, but the limit of zlog(x) as x tends to 0 ex-
ists and is equal to zero. If we take the limiting values, we see that at any vertex,
H(p,) = 0, as log(1) = 0. This is the minimum value of the entropy function.

The entropy function has a maximum value at an interior point of the simplex. To
find it we can use Lagrange multipliers.

THEOREM 1.1
If we have a sample space with N elements, the maximum value of the entropy
Sfunction is log(N ).




