PASCAL

JAMES L. RICHARDS

JAMES L. RICHARDS

Bemidji State Universify

ACADEMIC PRESS
A Subsidiary of Harcourt Brace Jovanovich
New York London
Paris San Diego San Francisco Sao Paulo
Sydney Tokyo Toronto

Copyright © 1982, by Academic Press, Inc.
All rights reserved.

No part of this publication may be reproduced or
transmitted in any form or by any means,
electronic or mechanical, including photocopy, recording,
or any information storage and retrieval system,
without permission in writing from the publisher.

Academic Press, Inc.
111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by
Academic Press, Inc. (London) Ltd.
24/28 Oval Road, London NW1 7DX

ISBN: 0-12-587520-7
Library of Congress Catalog Card Number: 81-66761

Printed in the United States of America

PREFACE

This book provides an introduction to computer programming and to the pro-
gramming language called Pascal. No prior experience either programming or us-
ing computers is required. Some knowledge of basic algebra is necessary to un-
derstand several of the examples presented in the book and is helpful in learning
the rules which govern the formation and use of mathematical expressions in the
Pascal language. Readers who have completed a course in college algebra or have
taken 1%»—2 years of high school algebra should have little difficulty with the
mathematical examples and concepts that are used.

Books on computer programming tend to emphasize the development of pro-
grams to solve real-world problems or the valid structures of instructions in a spe-
cific programming language. In an introductory programming course, a problem-
solving approach is usually more attractive to students than one which centers on
the constructs of a particular programming language, and yet the end product of
a student’s programming efforts must be a correct program written in some pro-
gramming language. Thus, a parallel approach that incorporates programming
methodoldgy and the grammar of a programming language is most appropriate.
In this book, I have tried to give a balanced presentation of programming meth-
odology and the Pascal language.

In order to design and implement efficient and effective computer programs,
a logical development strategy and an equally logical programming language are
necessary. Pascal is the language presented in this book because it facilitates
teaching good programming practices and because it is also being used widely for
applications in business, industry, and education. Furthermore, versions of Pascal
are available for nearly every popular large-scale computer and microcomputer.

Chapter One gives some background material on computer systems, program-
ming methods, and programming languages. Students who have previous pro-
gramming experience should be able to proceed through this chapter very rapidly.
Some discussion of the differences between batch and time-sharing computer sys-
tems and their control languages is presented, but the instructor will have to sup-
ply students with the specific control language instructions they will need to use.

Chapters Two and Three cover basic elements of the Pascal language such as
representations for numbers and other types of data, mathematical and nonmath- -
ematical operations on data, and the fundamental composition of a Pascal pro-
gram. Many short and simple programs appear as examples in these two chapters,
mostly to show how various types of data can be represented and used in a pro-
gram. All four of the Pascal standard scalar data types (CHAR, INTEGER, REAL,

X PREFACE

and BOOLEAN) and simple expressions involving operations on such data are pre-
sented in Chapter Two. Expressions that involve several operations are discussed
in Chapter Three.

~ Chapter Four is devoted entirely to Pascal instructions that are used for data
input and output. The principles that govern the way that Pascal handles data in-
put from an external source and displays the results of processing under program
control are explained and illustrated using many examples and diagrams. While
these principles are fundamentally the same for all versions of Pascal, some of the
specifics concerning input and output (particularly, input) given in this chapter
and illustrated in the examples are not exactly the same for all versions of Pascal.
Your instructor or local computer center can provide the specific-information you
need to know about input and output for the version of Pascal available on your
computer system.

Chapters Five and Six cover all of the Pascal instructions that control the se-
quencing of data processing. In Chapter Five, only those instructions that govern
the selection of alternative processing activities are discussed (IF and CASE state-
ments). Instructions that are used to control repetitive processing activities are
presented in Chapter Six (WHILE, REPEAT, and FOR statements). The GOTO
statement, which can be used to control either selection or repetition, is intro-
duced at the end of Chapter Six (Section 6.4). Since Pascal provides a wealth of
control structures that are far more attractive in style than any that use GOTO
statements, Section 6.4 is included more for completeness than anything else and
may be skipped without loss of continuity. .

Chapter Seven provides an introduction to data and data structures that can be
defined in a program. Only one type of structured data (the array) is discussed in
Chapter Seven, but it is the structured data type that most readers having pre-
vious programming experience will recognize, After a slight detour to discuss sub-
programs (functions and procedures) and their role in the modular design of a pro-
gram, additional structured data types are introduced in Chapter Nine (sets and
records), Chapter Ten (files), and Chapter Eleven (dynamic data structures).

The material in Chapters.One through Nine can easily be covered in a one-
quarter, 4-credit course or a one-semester, 3-credit course. In fact, I have been able
to include selected sections of Chapters Ten and Eleven in one. quarter A thorough
discussion of files and dynamic data structures is usually reserved for an advanced
programming course that concentrates on data structures. However, the rather
elementary presentation of files, pointers, and dynamic variables in Chapters Ten
and Eleven should be included in the course, if time permits, since it can ease the
transition to a follow-up course on data structures.

To date, there-s no universally accepted standard for Pascal. However, work to-
ward an international standardization of Pascal has been in progress for several
years. The International Standards Organization (ISO) is considering a proposed
standard that was originally developed as Working Draft/3 by the British Stand-
ards Working Group DPS/13/14. To the best of my knowledge, the features of Pas-
‘cal presented in this book are consistent with the proposed standard.)

There are many people to whom I will always be indebted for their help, adv1ce,
and encouragement during the preparation of this book. First and foremost, I
would like to thank my family for their understanding and encouragement. I am
also very grateful to my colleague Professor Tom Richard at Bemidji State Uni-
versity, who reviewed several versions of my manuscript and helped me class-test

PREFACE I

materials, and to Brent Cochran, Ron Elshaug, Jane Franz, Jim Herring, and Carol
Mack, who devoted many hours to checking the examples, programs, and exercises
that appear in this book. Finally, I would like to express my sincere appreciation
to all the referees who reviewed the manuscript and made many helpful
suggestions.)
JAMES L. RICHARDS
Bemidji, Minnesota
August 1981

CONTENTS

Preface ix

CHAPTER ONE
An Introduction to Computer Systems and Programming 1
1.1 Functional Units of a Computer I
1.2 Computer Programs and Programming 4
1.3 Problem-Solving Methodology in Programming 11/
14 Computer Systems 20

CHAPTER TWO

A First Look at Pascal 29
2.1 Basic Elements of a Pascal Program 30
2.2 Programs Using Declared Identifiers 41
2.3 Arithmetic in Pascal 49
24 Program Style and Debugging 56
2.5 Programming Problems 62

CHAPTER THREE
Pascal Expressions 65

3.1 Arithmetic Expressions 65
3.2 BOOLEAN Expressions 8/
3.3 Programming Problems 93

CHAPTER FOUR
Input and Output Statements 96
4.1 Batch Input 97
4.2 Interactive Input 108
43 Output 116
44 Programming Problems 127

vi CONTENTS

CHAPTER FIVE
Conditional Control Structures 129
5.1 Compound Statements 129

5.2 IF Statements 132

5.3 Nested IF Statements 147
54 CASE Statements 155

5.5 Programming Problems 164

CHAPTER SIX

Control Structures for Program Loops 169
6.1 The WHILE Statement 17/
6.2 The REPEAT Statement 179
6.3 FOR Statements /88 :
6.4 Transfer of Control to Labeled Statements 202
6.5 Programming Problems 208

CHAPTER SEVEN
Introduction to User-Defined Data Types 211
7.1 Simple Data Types 211
7.2 One-Dimensional Arrays 222
7.3 Packed Arrays and String Data Types 238
7.4 Multidimensional Arrays 249
7.5 Programming Problems 264

CHAPTER EIGHT
-Subprograms: FUNCTIONs and PROCEDUREs 268
8.1 User-Defined Subprograms 272
8.2 Parameters for Subprograms 283
8.3 Identifiers Declared in Subprograms 290
8.4 Further Uses for FUNCTIONs and PROCEDUREs 305
8.5 Programming Problems 372

- CHAPTER NINE

Sets and Records 317
9.1 Sets 317
9.2 Records 327 ;
9.3 Data Structures Formed by Using Records 342
9.4 Programming Problems 353

CHAPTER TEN
Files 357
10.1 Basic File Concepts 357
10.2 TEXT Files .371
10.3 Files with Structured Components 379
104" Programming Problems 398

CONTENTS Vi -

CHAPTER ELEVEN

Dynamic Variables and Data Structures 401
11.1 Pointer Variables and How to Use Them 401
11.2 Linked Lists Used to Represent Queues 416
11.3 Ordered Lists 430 :
11.4 Programming Problems 442

Appendix A Some Common Character Sets 446

Appendix B Pascal Keywords and Standard Identifiers 448
Appendix C Standard Functions and Procedures 449
Appendix D - Flowchart Symbols 457

Appendix E Answers to Selected Exercises 452

Appendix F. Programming Projects 466

Index 477

ONE/AN INTRODUCTION TO
COMPUTER SYSTEMS AND
PROGRAMMING

Modern computers are powerful machines that are used to collect, analyze, and
process enormous amounts of information rapidly and with a high degree of ac-
curacy. The physical form of this information is referred to as data. A computer
processes data by executing a sequence of precise instructions called a program.
Computer programs are designed and constructed by people known as program-
mers to perform data processing tasks that will solve real world problems. Pro-
gramming a computer is not really difficult, but it is meticulous work because
every computer understands only a limited set of very exact instructions.

This book is about computer programming. All programmers need to know
some fundamental terminology and facts about computers and programming.
These basics are presented in this chapter. Much of the information in the follow-
ing sections is not very detailed, since it is meant to provide only an overview of
computers and programming. As you read and study the material in this chapter,
try to develop some understanding of how computers, programs, and people inter-
act to accomplish data processing tasks. Pay particular attention to the terminol-
ogy that is introduced, because much of it will be used frequently in the remainder
of the text. This chapter will not answer all the questions you may have about
how computers operate and how they are programmed, but it wiltgive you some
basic knowledge that will help you develop programming skills.

1.1
FUNCTIONAL UNITS OF A COMPUTER

The physical machinery of which a computer is constructed is referred to as hard-
ware. Each hardware device consists of electronic circuits and wires assembled to
give that device certain data processing capabilities. The general organization of
the hardware components for a typical computer is depicted in Figure 1-1. Basi-
cally, a computer has four functional units: a central processing unit (CPU), an
input unit, an output unit, and a memory. The arrows in Flgure 1-1 represent
the flow of data between the various units.

THE CENTRAL PROCESSING UNIT

'The central processing unit consists of circuitry that monitors and controls all the
other hardware devices that are part of the computer. Actually, the CPU is com-
posed of two units: the control unit and the arithmetic and logic unit. The control

2 ONE/AN INTRODUCTION TO COMPUTER SYSTEMS AND PROGRAMMING

Central Processing Unit (CPU)

Arithmetic
CcLer:irtol and Logic
Unit

|

Input ; . Output
Unit e Primary Memory Unit
Secondary Memory
Figure 1-1

The functional units of a typical computer.

unit can access instructions from programs stored in memory, interpret those in-
structions, and then activate appropriate units of the computer to execute them.
Other activities of the control unit include generating control and timing signals
for the input and output units, entering and accessing data stored in memory, and
routing data between memory and the arithmetic and logic unit.

The arithmetic and logic unit is a servant of the control unit. It can perform
such simple arithmetic operations as addition and subtraction and it can perform
certain logical operations such as comparing two numbers. The control unit pro-
vides the arithmetic and logic unit with appropriate data and then activates.that
unit to perform the desired operation. ‘

MEMORY

As depicted in Figure 1-1, a computer has two types of memory: primary memory
and secondary memory. Primary memory is sometimes called internal memory
because it usually occupies the same physical enclosure as the central processing
unit. A computer’s primary memory consists of individually accessible storage
cells, which we shall call memory locations. Each memory location can store ex-
actly one data value, such as a number. A small computer may have only a few
thousand of these memory locations, whereas large computers often have more
than a million storage cells in their primary memory. Every memory location has
a unique identification number, which serves as its memory address. We can think
of an individual memory location as a box with a numbered lid whose contents
are always visible through one end, as depicted in Figure 1-2. The central pro-
cessing unit can access any memory location by using its memory address. Once
the CPU has‘found a particular memory location, it can simply observe the con-

1.1 FUNCTIONAL UNITS OF A COMPUTER =~ 3

Memory
Address

Contents of Memory

Figure 1-2
A memory location simulated as a box with a window at one.
end through which its contents are visible.

tents of that storage cell or it can store some value there. In the latter case, the
new value replaces any value that is already in the memory location. The "old
value” is destroyed because a memory location has the capacity to store only one
value at a time.

The CPU accesses storage locations in primary memory very rapidly compared
to those in secondary memory. Primary memory is normally used to store only
information currently being processed by the CPU because the number of memory
locations in primary memory is always limited. Secondary memory (also known
as mass storage) provides more permanent data storage. Magnetic tapes and disks
are.common forms of secondary memory. Magnetic tape is a plastic ribbon coated
with magnetic material on which information can be recorded in much the same
way that a voice or music is recorded on sound tapes. A magnetic disk is a thin
circular disk made of metal or plastic; it, too, is coated with magnetic material
that serves as a recording medium. The amount of secondary memory is essen-
tially unlimited, since tapes and disks can be removed from recording devices
when they are filled with information and can be replaced by new tapes or disks.

INPUT AND OUTPUT UNITS

Input and output units link a computer with the outside world. Data and pro-
grams enter a computer’s primary memory via some input device, and processed
information is displayed on some output device. There are many types of input
devices, and each one can "read” information represented in some physical form.
Programs and data prepared on punched cards or paper tape, mark-sense cards,
magnetic tape, or magnetic disks may be fed into an appropriate input device.
Some input devices have typewriter-like keyboards that can be used to enter in-
formation. An output device is used to copy information from the computer’s
memory onto some recording medium. There are output devices that will print on
paper, punch cards, or paper tape; record on magnetic tape or disks; or display
infortnation on a television screen. Although every computer normally uses at
least one input device and one output device, it is not uncommon for the input
and output units to have available several devices for input and output.

4 ONE/AN INTRODUCTION TO COMPUTER SYSTEMS AND PROGRAMMING

1.2

1.1

EXERCISES

1. What is a computer program?
2. To what does the term "hardware” refer with respect to computers?

3. Name the four functional units of a computer and briefly describe the function
of each unit.

4. Why does a computer need both a primary memory and a secondary memory?

5. What does the phrase "memory address” mean?

COMPUTER PROGRAMS AND
PROGRAMMING

The actual writing of a computer program is called coding. A program is simply
a sequence of instructions for a computer that has been coded in a specific pro-
gramming language. There are many programming languages and each one is a
formal system of symbols, including rules for forming expressions, that can be
used by a human being to communicate with a computer. Meaningful expressions
are formed according to rigid syntax rules (or grammar) utilizing a well-defined
vocabulary. Every program instruction must conform precisely to the syntax rules
for the language in which the program is written. The rules are very rigid because
a computer cannot "think” like a human being; it merely follows precise directions
given in a program, and so those directions must be unambiguous. As with any
language, the grammar for a programming language tells how to form "sentences”
that are properly structured. There are rules of semantics, which tell
when a syntactically correct instruction is also meaningful. Consider the following
two English sentences.

Put the meat into the refrigerator.
Put the refrigerator into the meat.

Both sentences are syntactically correct according to the grammar of the English
language, but the second sentence is semantically incorrect.

MACHINE-LEVEL LANGUAGES

The central processing unit can only execute instructions that are coded in ma-
chine language. In machine language, instructions and data are stored in the com-
puter’s memory as numbers composed solely of 1’s and 0’s. This is known as bi-
nary coding and the digits 0 and 1 are referred to as bits (short for binary digits).
The number of bits that can be stored in a memory location is fixed for each
computer. Suppose that our computer has memory locations that store 16-bit
numbers. If we could look at the memory location whose addess is 327, we might
see

327 | 0001010000001100

1.2 COMPUTER PROGRAMS AND PROGRAMMING 5

The contents of memory location 327 could represent a machine language instruc-
tion. If so, the control unit of the CPU can decode the instruction by examining
groups of consecutive bits. For instance, the first six bits could be an operation
code and the remaining ten bits could specify the source of data needed for the
designated operation, as illustrated below.

(000101) (0000001100)

Operation Data Source
Code

A machine language program consists of a sequence of binary coded instructions
that the control unit is able to decode and execute. _

In order to execute a program, the CPU uses special storage locations called
registers. These registers are not part of primary memory. The computer executes
the instructions in a program one at a time by repeating the same sequence of
activities over and over again. That sequence of activities is called the instruction
execution cycle. Two registers play central roles in the execution of an instruction:
~ the program counter (register PC) and the instruction reglster (register IR). Here
is a typical instruction execution cycle.

1. Fetch the instruction whose memory-address is in register PC and copy it into
register IR.

2. Increment the contents of register PC by 1 so that the memory address of the
next instruction will be availablg at the start of the next cycle.

3. Decode the contents of register IR and fetch the data needed to perform the
specified operation.

4. Execute the instruction.

When execution of the program is initiated, the program counter must contain the
address of the first instruction. After that, each instruction execution cycle estab-
lishes the memory address for the instruction to be executed during the next cycle.

The CPU also has registers that it can use as "scratch pads” for numerical cal-
culations. A register of this type is called an accumulator, and so we will refer to
it as register AC. Some typical machine operations and the corresponding codes
are given in the table below. The operations and codes listed in this table are for
a hypothetical computer.

Operation Code

Binary Decimal Operation

000000 0 Halt the execution of the program.

000101 5 Store the value of the data source in register AC.

010000 16 Load a copy of the value in register AC into the memory location
whose address is the data source.

101011 43 Add the value of the data source to the contents register AC.

The table shows the operation codes in both binary and decimal form, the latter
being the usual way to represent a whole number. Consider the following machine
language program, which is stored in memory locations 327 through 330. The op-

6 ONE/AN INTRODUCTION TO COMPUTER SYSTEMS AND PROGRAMMING

eration codes and data sources are also shown in decimal form so that we can
follow the execution of the program.

Memory Operation Data
Address Memory Contents Code Source
327 0001010000001100 5 12
328 1010110000110011 43 51
329 0100000101000110 16 326
330 0000000000000000 0 0

When this program is executed, the numbers 12 and 51 will be added and the sum
will be stored in memory location 326. Initially, the program counter will contain
the memory address of the first instruction (327). A summary of the effects of each
instruction is shown below. This summary traces the changes made to the con-
tents of registers IR, PC, and AC. The contents of registers PC and AC would be in
binary form inside the computer, but they are shown in decimal form here so that
we can follow the progress of the program more easily.

Instruction Register Register Register
IR PC AC
327 |
. R
Store the value 12 in the - 0001010000001100 328 ‘(12
accumulator tregister AC). —_—
Add the value 51 to the contents. 1010110000110011 329 63
' of register AC.
Load memory location 326 with 0100000101000110 330 63
a copy of the contents of AC.
Halt the program. 0000000000000000 331 63

At the end of the program, both register AC and memory location 326 (not shown
in this table) will contain the value 63 (decimal).

Coding machine language instructions is difficult because it is necessary to re-
member specific combinations of 1’s and 0’s or to be constantly looking them up
in some reference manual. Even one bit that is misplaced can totally change the
meaning of an instruction. It is very easy to make errors when coding a machine
language program and very difficult to locate the errors so that they can be cor-
rected. In short, machine language programming is so complicated and time con-
suming that it is rarely used.

1.2 COMPUTER PROGRAMS AND PROGRAMMING 7

* As an alternative to machine language coding, programs can be written by using
abbreviations instead of binary codes to represent machine-level instructions. A
language of this type is known as an assembly language. An assembly language
program is written at the same level of detail as a machine language program, but
the instructions are written in a form that makes them easier for humans to read.
Consider. thé following sequence of hypothetical assembly language instructions.

SUM CON O

PROG 'LDAC 12
ADD 51
STAC SUM
HALT PROG
END

As we know, a computer can only execute a program that is written in machine
language. An assembly language program must be translated into machine lan-
guage before it can be executed. This task is performed by another program, called
an assembler, that resides in the computer’s memory. The assembler treats an
assembly language program as data and produces an equivalent version of that
program in machine language. When we say that an assembly language program
is executed, we mean that the assembled machine language version of that pro-
gram is executed.

In the assembly language program shown above, the symbolic names LDAC,
ADD, STAC, and HALT represent machine-level operations. The assembler bears
the burden of constructing machine language instructions in which the corre-
sponding binary operation codes appear. Relative to the operation codes we dis-
cussed earlier, these symbolic operation codes may have the meanings shown in
the following table.

Operation Code

Symbolic Binary Operation
HALT 000000 Halt the execution of the program.
STAC 000101 - Store the value of the daia source in register AC.
LDAC 010000 Load a copy of the value in register AC into the memory
location whose address is the data source.
ADD - 101011 Add the value of the data source to the contents of register AC. -

The data sources appear after the symbolic operation codes in the assembly lan-
guage program. SUM and PROG are symbolic names for memory addresses. SUM
represents a memory location whose initial value is the CONstant 0. PROG is the
symbolic name for the address of the first instruction in the program. When the
program is assembled, the memory address corresponding to PROG is recorded sc
that the address of the first machine language instruction can be placed in the
program counter when execution of the program is initiated. The word END
marks the physical end of the assembly language program so that the assembler
knows when to stop creating machine language instructions. If PROG has been
associated with the memory address 327, the assembler language program and its
corresponding machine language version will be as shown below.

8 _ONE/AN INTRODUCTION TO COMPUTER SYSTEMS AND PROGRAMMING

Assembly Language Program Machine Language Version
Memory
Address Memory Contents
SUM CON O 326 0000000000000000
PROG LDAC 12 327 0001010000001100
ADD 51 328 1010110000110011
STAC SUM 329 0100000101000110
HALT PROG 330 0000000000000000
END

The machine language program assembled here is identical to the one discussed
earlier. Thus the purpose of the assembly language program is to add the numbers
12 and 51 and store the result in the memory location immediately preceding the
one that contains the first program instruction (memory location 326, whose sym-
bolic name is SUM).

Although an assembly language program looks different from a machine lan-
guage program, programming in assembly language is still dominated by ma-
chine-oriented concepts. One of the major drawbacks to programming in machine
language or assembly language is that there is no one machine language for all

computers. In fact, machine languages (and hence assembly languages) vary con-
siderably from computer to computer.

HIGH-LEVEL LANGUAGES

A computer’'s machine language is, unfortunately, far removed from languages
that people use to communicate with other people. For this reason, modern com-
puters are equipped with "built-in” programs called systems programs that enable
them to communicate with people in a more human-like fashion. An assembler is
a systems program that allows a programmer to create a machine-level program
using symbols that are more descriptive of machine operations than binary code.
The assembler’s job is to translate a grammatically correct assembly language
program into machine language. A systems program that takes a program written
in one language and produces a version of that program in a different language is
known as a language processor. There are three types of language processors: as-
semblers, compilers, and interpreters. Programs written in an assembly language
specify operations at the machine level and so they must be coded with the hard-
ware capabilities of the computer in mind. Other symbolic languages have been
developed to take care of specific hardware requirements automatically so that
the programmer can concentrate more on procedures and problem solving and
less on the work of the computer. These so-called high-level languages allow pro-
gram instructions to appear in an English-like form or with mathematical formu-
las. Compilers and interpreters are language processors used to produce transla-
tions of programs written in high-level languages.

While machine and assembly languages are tied to particular computers, high-
level languages are not. Compilers and interpreters for a high-level language can
be implemented as systems programs on a wide range of computers. This versatil-
ity makes possible the coding of "portable” programs; that is, a program coded in
a high-level language can be translated and executed by many different comput-
ers. There are hundreds of high-level languages in existence, but only a few of

