

McGRAW-HILL

Zoology Sixth Edition

Stephen A. Miller College of the Ozarks

John P. Harley Eastern Kentucky University

ZOOLOGY, SIXTH EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New York, NY 10020. Copyright © 2005, 2002, 1999, 1996 by The McGraw-Hill Companies, Inc. All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc., including, but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

This book is printed on recycled, acid-free paper containing 10% postconsumer waste.

1234567890VNH/VNH0987654

ISBN 0-07-252836-2

Publishers: Martin J. Lange/Colin H. Wheatley

Developmental editor: Fran Schreiber Marketing manager: Heather K. Wagner Senior project manager: Jayne Klein Production supervisor: Sherry L. Kane Senior media project manager: Tammy Juran Senior media technology producer: John J. Theobald

Senior designer: David W. Hash Cover designer: Rokusek Design

Cover photo: ©2003 Nishina Masayoshi/Jun Imamoto www.umiushi.info

Senior photo research coordinator: Lori Hancock

Photo research: LouAnn K. Wilson

Compositor: The GTS Companies/Los Angeles, CA Campus

Typeface: 10/12 Goudy

Printer: Von Hoffmann Corporation

The credits section for this book begins on page 531 and is considered an extension of the copyright page.

Library of Congress Cataloging-in-Publication Data

Miller, Stephen A.

Zoology / Stephen A. Miller, John P. Harley. — 6th ed.

Includes bibliographical references (p.) and index. ISBN 0-07-252836-2 (hard copy : alk. paper)

1. Zoology. I. Harley, John P. II. Title.

QL47.2M55 2005

590—dc22

2003024621

CIP

www.mhhe.com

PREFACE

As authors, we are honored to play a key role in the instruction of future generations of zoologists, ecologists, wildlife managers, and other life scientists. We undertook the revision for the sixth edition with this privilege, and the responsibility for content integrity, in mind.

The preparation of the sixth edition of *Zoology* involved careful evaluation of the previous editions and the features that contributed to the understanding of zoology as an exciting and dynamic scientific field. Our goal in preparing the sixth edition of *Zoology*, as in previous editions, was to prepare an introductory general zoology textbook that we believe is manageable in size and adaptable to a variety of course formats. We have retained the friendly, informative writing style that has attracted instructors and students to previous editions.

The shorter format of the fifth edition was well received by users as being less expensive and easily adapted to a one-semester course format. The sixth edition retains that format. The shorter format does mean that some general biological topics were eliminated from the book. These chapters are, however, still available, along with numerous other resources, in an electronic format on the book website and are free to adopters of the book. (Chapters found online only are indicated in the Table of Contents by an asterisk.)

CONTENT AND ORGANIZATION

We have maintained from the inception of this text that evolutionary and ecological perspectives captivate students and are fundamental to understanding the unifying principles of zoology. These perspectives are incorporated into *Zoology* in a number of ways. For example, animal structure and function are considered in the context of the environment, the animal phyla are described in the context of their roles in ecosystems, and most of the "Wildlife Alerts" that first appeared in the fourth edition, and were expanded in the fifth edition, have been retained. These boxed readings depict the plight of selected animal species or broader ecosystem issues relating to preserving various animal species.

We believe that the sixth edition of *Zoology* presents evolution as an exciting and dynamic field of study—a field of study that is vital for understanding all of biology. In addition, the continuing and expanding pseudoscientific attacks on biology make it a necessity that evolutionary concepts be presented clearly and convincingly throughout the biology curricula. We have attempted to do just that. A special font highlights important evolutionary concepts. Animal survey chapters begin with an "Evolutionary Perspective" and end with "Further Phylogenetic Considerations." These sections describe evolutionary relationships within each phylum and evolutionary connections to animals of previous

and following chapters. Updated cladograms are used to depict taxonomic relationships. Evolutionary connections and animal adaptations are stressed in the structure and function sections.

To further explain and support evolutionary concepts, this sixth edition has a second set of themed boxed readings (in addition to "Wildlife Alerts") entitled "Evolutionary Insights." These boxes provide detailed examples of principles covered in a chapter and provide insight into how evolutionary biology works. For example, chapter 4 includes a reading on big-cat biogeography that illustrates how a variety of sources of evidence are used to paint a picture of the history of one group of animals. Chapter 5 has a reading on the speciation of Darwin's finches that illustrates how and why speciation occurs. Other readings describe ideas regarding animal origins and the debates that occur among taxonomists who try to sort out evolutionary relationships within animal groups.

Zoology is organized into three parts. Part One covers the common life processes, including cell and tissue structure and function, the genetic basis of evolution, and the evolutionary and ecological principles that unify all life.

Part Two is the survey of protists and animals, emphasizing evolutionary and ecological relationships, aspects of animal organization that unite major animal phyla, and animal adaptations. All of the chapters in Part Two have been updated. The presentation of taxonomic principles in chapter 7, and the taxonomic relationships in chapters 8 through 22, have been carefully revised and incorporate some of the flavor of the exciting changes occurring in the field of taxonomy. You will see some of these changes listed under "New to the Sixth Edition." Cladograms have been updated and, as in previous editions, full-color artwork, photographs, and lists of phylum characteristics are used to highlight each phylum.

Part Three covers animal form and function using a comparative approach. This approach includes descriptions and fullcolor artwork that depict evolutionary changes in the structure and function of selected organ systems. Part Three includes an appropriate balance between invertebrate and vertebrate descriptions.

NEW TO THE SIXTH EDITION

Major additions to the sixth edition focus on evolutionary principles and taxonomy. Evolutionary concepts must be presented clearly and convincingly in biology courses. We believe that changes we have made will help instructors accomplish that goal by providing more evidence of evolution, more examples to illustrate evolutionary principles, and more detail on evolutionary mechanisms. Recent, fast-paced changes in animal taxonomy require constant reevaluation of the presentation of evolutionary

relationships between animal taxa. Because the taxonomy of many animal groups is unsettled, we have tried to take a conservative, yet up-to-date, position on taxonomic revisions. The following are major additions to this edition.

- "Evolutionary Insights" boxes appear in selected chapters.
 These readings present students with further information and examples of how evolutionary biology works.
- Chapter 4 is reorganized and presents new information on the
 distinction between microevolution and macroevolution. The
 coverage of the evidence for macroevolution includes an expanded discussion of paleontology, a reorganized and expanded
 discussion of homology and analogy from the perspectives of
 both comparative anatomy and molecular biology, and a new
 presentation of evidence from developmental biology. A new
 section on phylogeny and common descent caps this chapter.
- Chapter 5 begins with an expanded presentation of populations and gene pools. The sections on sources of variation and gene flow are enhanced with more information and new examples.
- Chapter 9 presents new information on the evolutionary relationships of the Porifera, Cnidaria, and Ctenophora.
- Chapter 13 provides an updated taxonomy of the Annelida, including the presentation of the oligochaetes and leeches as members of a single class Clitellata.
- Chapters 14 and 15 include an extensive update on arthropod taxonomy. Arthropods are presented as a monophyletic group, and recent thinking regarding crustacean ancestry for the phylum is discussed. There is expanded coverage of the hemocoel and insect nutrition and digestion.
- Chordate taxonomy in chapters 17 through 22 has been updated. Chapter 18 includes an expanded discussion of the evolution of jaws and paired appendages and the fish-to-amphibian transition. Chapter 19 introduces more coverage of the early evolution of the Stegocephalia and Tetrapoda. Chapter 21 has expanded coverage of bird evolution.

SUPPLEMENTARY MATERIALS

Supplementary materials are available to assist instructors with their presentations and course management and to augment student learning. The usefulness of these supplements is now greatly enhanced with the availability of online, digital, and printed resources. A Digital Content Manager is available as a CD-ROM. It contains PowerPoint slides of most line art and photographs from the textbook, which can be used in customizing classroom presentations.

ONLINE LEARNING CENTER

As with the previous edition, chapters on cell chemistry, energy and enzymes, embryology, and animal behavior—along with numerous boxed readings and pedagogical elements—have been moved to the Online Learning Center. This content-rich website is located at www.mhhe.com/zoology—just click on this book's

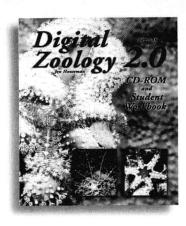
cover. Both instructors and students can take advantage of numerous teaching and learning aids within this book's Online Learning Center.

Instructor Resources:

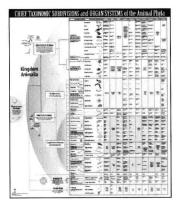
- · Instructor's Manual
- Instructor Resource Guide
- Link to Digital Zoology

Student and Instructor Resources:

- Interactive Cladistics Exercises
- Chapters on:
 - Chapter 30: The Chemical Basis of Animal Life
 - Chapter 31: Energy and Enzymes: Life's Driving and Controlling Forces
 - Chapter 32: How Animals Harvest Energy Stored in Nutrients
 - Chapter 33: Embryology
 - Chapter 34: Animal Behavior
- Quizzing
- Flashcards
- Suggested Readings
- Boxed Readings
- Animation Exercises
- Zoology Lab Correlations
- Zoology Essential Study Partner (ESP)


OTHER RESOURCES

The following items may accompany Zoology. Please consult your McGraw-Hill representative for policies, prices, and availability.


- An Instructor's Manual, prepared by Susan L. Keen, is available for instructors within the Online Learning Center. It provides items such as a lecture outline, lecture enrichments, research discussion topics, teaching suggestions, and/or suggested readings for each chapter.
- A Zoology Test Item CD-ROM is also available for instructors. This contains approximately 50 multiple-choice questions and the instructor's manual for each chapter.
- General Zoology Study Guide, prepared by Jane Aloi and Gina Erickson, contains subject-by-subject summaries, questions, and learning activities.
- A set of 100 full-color acetate transparencies is available to supplement classroom lectures.
- General Zoology Laboratory Manual, Fifth Edition, by
 Stephen A. Miller, is an excellent corollary to the text and
 incorporates many learning aids. It includes illustrations and
 photographs, plus activities on scientific method, cladistics,
 ecological and evolutionary principles, and animal structure
 and function. A Laboratory Resource Guide, available within
 the Online Learning Center, provides information about
 materials and procedures and answers to worksheet questions
 that accompany the lab exercises.

xiv Preface

• Digital Zoology CD-ROM is an exciting interactive product designed to help you make the most of your zoology classes and laboratory sessions. This program contains interactive cladograms, laboratory modules, video, interactive quizzes, hundreds of photographs, a full glossary, and much detailed information about the diversity and evolution of the animals that we find on the planet. To find out the latest news on this ever-expanding product, log on to www.digitalzoology.com and find out how to incorporate this valuable resource into your course.

 Study Aid/Poster: Chief Taxonomic Subdivisions & Organ Systems of the Animal Phyla—This 30- × 36-inch poster is a great reference/study tool for students.

- Available through the Zoology Online Learning Center or on a free CD-ROM, the Zoology Essential Study Partner is a complete, interactive study tool offering animations and learning activities to help students understand complex zoology concepts. This valuable resource also includes selfquizzing to help students review each topic.
- PageOut[®] is the solution for professors who need to build a course website. The following features are now available to professors:

- The PageOut Library offers instant access to fully loaded course websites with no work required on the instructor's part.
- Courses can now be password protected.
- Professors can now upload, store, and manage up to 10 MB of data.
- Professors can copy their course and share it with colleagues or use it as a foundation for next semester. Short on time? Let us do the work. Our McGraw-Hill service team is ready to build your PageOut website and to provide content and any necessary training. Learn more about PageOut and other McGraw-Hill digital solutions at www.mhhe.com/solutions.

ACKNOWLEDGMENTS

We wish to thank the reviewers who provided detailed analysis of the text during development. In the midst of their busy teaching and research schedules, they took time to read our manuscript and offer constructive advice that greatly improved this sixth edition.

REVIEWERS

Barbara J. Abraham, Hampton University Marc C. Albrecht, University of Nebraska at Kearney Donald I. Anadu, South Carolina State University Joe Arruda, Pittsburg State University Amir M. Assadi-Rad, San Joaquin Delta College Kris Burnell, Santa Barbara City College Vincent A. Cobb, Northeastern State University Marjorie M. Collier, Louisiana State University at Alexandria D. Charles Dailey, Sierra College Lewis Deaton, University of Louisiana at Lafayette Elizabeth A. Desy, Southwest State University Charles D. Dieter, South Dakota State University Phillip Eichman, University of Rio Grande David J. Eisenhour, Morehead State University Bruce E. Felgenhauer, University of Louisiana at Lafayette Jim Goetze, Laredo Community College Glenn A. Gorelick, Citrus College Edward J. Greding, Jr., Del Mar College Ann Grens, Indiana University-South Bend Leon E. Hallacher, University of Hawaii at Hilo Jenna Jo Hellack, University of Central Oklahoma I. L. Henriksen, Bellevue University Gary W. Hunt, Tulsa Community College Arthur B. Jantz, Western Oklahoma State College Ritin Khan, Armstrong Atlantic State University Scott L. Kight, Montclair State University Shelley A. Kirkpatrick, Saint Francis University Robert A. Krebs, Cleveland State University Mary Jane Krotzer, Stillman College Kevin Lyon, Jones County Junior College Kelly M. Mack, University of Maryland Eastern Shore Neal F. McCord, Stephen F. Austin State University

Bonnie McCormick, University of the Incarnate Word Michael B. McDarby, Fulton-Montgomery Community College Emily C. McDuffee, Freed-Hardeman University William R. Miller, Chestnut Hill College Devonna Sue Morra, Saint Francis University Charles M. Page, El Camino College Louis L. Pech, Carroll College Polly K. Phillips, Miami-Dade Community College Karen E. Plucinski, Defiance College Michelle A. Priest, College of the Canyons William M. Saidel, Rutgers University-Camden Allen Sanborn, Barry University Neil Schanker, College of the Siskiyous Doug Schexnayder, Copiah-Lincoln County College Fred Schindler, Indian Hills Community College Shari Snitovsky, Skyline College Ken Spitze, University of Miami Annie M. Talley, Asheville-Buncombe Technical College Michael E. Toliver, Eureka College Richard E. Trout, Oklahoma City Community College Elise M. Van Ginkel, Madison Area Technical College Scott E. Walter, University of Wisconsin-Richland Danny B. Wann, Carl Albert State College Marylo A. Witz, Monroe Community College Jeffery S. Wooters, Pensacola Junior College Robert W. Yost, Indiana University/Purdue University at Indianapolis David D. Zeigler, University of North Carolina at Pembroke

Brenda Zink, Northeastern Junior College

The publication of a text requires the efforts of many people. We are grateful for the work of our colleagues at McGraw-Hill who have shown extraordinary patience, skill, and commitment to this textbook. Marge Kemp has helped shape Zoology from its earliest planning stages. Although she has moved up to other responsibilities within McGraw-Hill, her wisdom and skill is still evident in this sixth edition. Donna Nemmers, Senior Developmental Editor, has worked with this textbook through the last two revisions. We are grateful for her skill in coordinating many of the tasks involved with publishing previous editions of Zoology. Our Developmental Editor, Fran Schreiber, helped make the production of the sixth edition remarkably smooth. Fran kept us on schedule and the production moving in the plethora of directions that are nearly unimaginable to us. Jayne Klein served as Senior Project Manager for this edition. We appreciate her efficiency and organization. We also thank Rose Kramer for proofreading the entire textbook.

Finally, but most importantly, we wish to extend appreciation to out families for their patience and encouragement. Janice A. Miller lived with this text through many months of planning and writing. She died suddenly two months before the first edition was released. Our wives, Carol A. Miller and Donna Dailey Harley, have been supportive throughout the revision process. We appreciate the sacrifices that our families have made during the writing and revision of this text. We dedicate this book to the memory of Jan and to our families.

STEPHEN A. MILLER JOHN P. HARLEY

ONLINE LEARNING CENTER

www.mhhe.com/zoology (click on this book's cover)

Students: You'll appreciate extensive self-quizzing opportunities; interactive activities; and related weblinks in addition to the Zoology Essential Study Partner—a web-based review of major zoology topics—hosted on this site.

Instructor Resources:

- Instructor's Manual
- Instructor Resource Guide
- Link to Digital Zoology

Student & Instructor Resources:

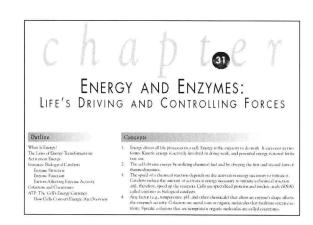
Stephen A. Miller, College of the Ozarks John B. Harley, Eastern Kentucky University

Enjoy your visit to the Zoology Online Learning Center

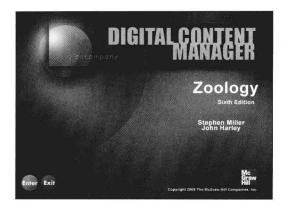
To obtain an instructor login to the Online Learning Centers, ask your local sales representative. If you're an thinking about adopting this textbook, request a free copy for review.

©2005 McGraw Hill Higher Education
Any use is subject to the Terms of Use and Privacy Policy.
McGraw Hill Higher Education is one of the many line businesses of The McGray Hill.

ISBN: 0072528362 Copyright year: 2005 Zoology


• Interactive Cladistics Exercises

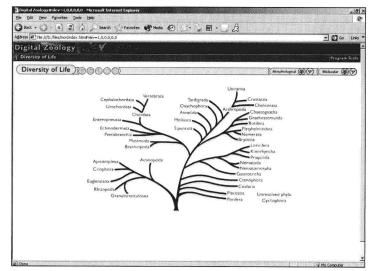
Zoology

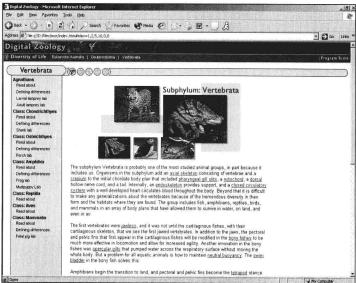

- Quizzing
- Flashcards
- Suggested Readings
- Boxed Readings
- Animation Exercises
- Zoology Lab Correlations
- Zoology Essential Study Partner (ESP)

Additional Chapters:

- Chapter 30: The Chemical Basis of Animal Life
- Chapter 31: Energy and Enzymes: Life's Driving and Controlling Forces
- Chapter 32: How Animals Harvest Energy Stored in Nutrients
- Chapter 33: Descriptive Embryology
- Chapter 34: Animal Behavior

Digital Content Manager CD-ROM




Digital Zoology CD-ROM and Student Work Book

Digital Zoology is an interactive guide that will help reinforce what students are learning in their zoology lecture and laboratory sessions. Here is what you will find on this easy-to-use CD-ROM.

- Laboratory modules containing illustrations, photographs, annotations of the major structures of organisms, interactive quizzes, and over 70 video clips of animal diversity, habitats, and behaviors.
- Interactive cladograms and dendograms within lab modules, along with links to interactive synapomorphies of the various animal groups.
- Key terms with links to an interactive glossary of over 750 definitions.
- Taxon "Read Abouts" that include information on over 100 taxa, the number of living and extinct species, habitats, and how they function.
- Updated taxonomy of the animal phyla that allows for easy comparison of the differences between traditional morphological phylogenies and those created with molecular data.
- Image galleries available for many of the major phyla, providing photos that detail diversity within the phyla.
- An accompanying student workbook with self-tests, crossword puzzles, and a website to provide additional study tips, exercises, and phyla characteristics.

For the first time, Zoology will have a text-specific Digital Content Manager CD-ROM. This powerful and easy-to-use tool is designed to help instructors easily incorporate text-specific illustrations and photos into lecture presentations and printed classroom materials. Organized by chapter, this cross-platform CD-ROM contains a collection of visual resources that can be imported and reproduced in multiple formats to create customized lectures, visually based tests and quizzes, dynamic course website content, or attractive printed materials.

GUIDED TOUR

The organization and features of this book have been planned with students' learning and comprehension in mind.

CRITICAL THINKING QUESTIONS

Students can synthesize the chapter information by applying it to the Critical Thinking Questions in each chapter.

PART TWO Animal-like Protists and Animalia

SUMMARY

- The kingdom Protista is a polyphyletic group that arose about
 Shillion years ago from the Archaea. The evolutionary pathways
 leading to modern protozoa are uncertain.
- Protozoa are both single cells and entire organisms. Organelles specialized for the unicellular lifestyle carry out many protozoar.
- 3. Many protozoa live in symbiotic relationships with other organsms, often in a host-parasite relationship.
- isms, often in a host-parasite relationship.

 4. Members of the phylum Sarcomassigophora possess pseudopodia and/or one or more flagella.

 5. Members of the class Phytomastigophorea are photosynthetic and include the genera Euglena and Voltox: Members of the class Zoomastigophorea me beterstrophic and include Trylamosoma, which causes sleeping sickness.
- Amoebae use pseudopodia for feeding and locomotion
- Members of the subphylum Sarcodina include the freshwater genera Amoeba, Arcella, and Difflagia, and the parasitic genus Entamoeba. Foraminiferans and radiolarians are common marine.
- amoretic.

 8. Members of the phylum Apicomplexa are all parasites. The phylum includes Plasmodium and Toxoplasma, which cause malaria and toxoplasmosis, respectively. Many apicomplexans have a three-part life cycle involving schizogony, gunetogony, and sporogony.

 9. The phylum Microspora consists of small prototos that are intracellular parasites of every major animal group. They are transmitted from one host to the next as a spore, the form from which the mount during its power. group obtains its name.
- 10. The phylum Acetospora contains protozoa that produce spore lacking polar capsules. These protozoa are primarily parasitic is molluses.
- 11. The phylum Myxozoa consists entirely of parasitic species, usually found in fishes. One to six polar filaments characterize the spore
- tound in fishes. One to say polar filaments characterize the spore.

 2. The phylum Ciliophora contains some of the most complex of all protosos. Its members posses cilia, a macronucleus, and one or more micronuclei. Mechanical coupling of cilia coordinates their movements, and cilia can be specialteed for different kinds of locomotion. Ciliates reproduce sexually by conjugation. Diploid ciliates undergo mechosis of the micronuclei to produce haploid pronuclei that two conjugants can exchange.
- 13. Precise evolutionary relationships are difficult to determine for the Processe evolutionary relationships are difficult observations for par-protocoat. The fossil record is sparse, and what does exist is not par-ticularly helpful in deducing relationships. However, ribsosmal RNA sequence comparisons indicate that each of the seven proto-coan phyla probably had separate origins.

SELECTED KEY TERMS

ectoplasm (p. 112) endoplasm (p. 112) host (p. 113) macronucleus (p. 123) micronuclei (p. 123)

multiple fission (schizogony) (p. 113) pellicle (p. 112) protozoa (p. 112) protozoologists (p. 114) trichocysts (p. 123)

CRITICAL THINKING QUESTIONS

- 1. If knowing for certain the evolutionary pathways that gave rise to protozoa and animal phyla is impossible, is it worth constructing hypotheses about those relationships? Why or why not?
- In what ways are protozoa similar to animal cells? In what ways are they different?
- 3. If sexual reproduction is unknown in Euglena, how do you think this lineage of organisms has survived through evolutionary time (Recall that sexual reproduction provides the genetic variability that allows species to adapt to environmental changes.)
- 4. The use of DDT has been greatly curraited for ecological reasons. In the past, it has proved to be an effective malaria deterrent. Many organizations would like to see this form of mosquito control resumed. Do you agree or disagree? Explain your reasoning.
- If you were traveling out of the country and were concerned about contracting amoebic dysentery, what steps could you take to avoid contracting the disease? How would the precautions differ if you were going to a country where malaria is a problem!

ONLINE LEARNING CENTER

Visit our Online Learning Center (OLC) at www.mhhe.com/zoology (click on this book's title) to find the following chapter-related mater

- CHAPTER QUIZZING . RELATED WEB LINKS
- Phylum Sarcomastigophora Phylum Apicomplexa Phylum Ciliophora Other Protozoan Phyla
- BOXED READINGS ON Giardiasis: "Backpacker's Disease" in the Rocky Mountains Malaria Control—A Glimmer of Hope
- SUGGESTED READINGS
- LAB CORRELATIONS

Check out the OLC to find specific information on these related lab exercises in the General Zoology Laboratory Manual, 5th edition, by Stephen A. Miller:

Exercise 8 Animal-like Protists

CHAPTER CONCEPTS

The concepts most important to the understanding of each chapter are highlighted on the first page of each chapter.

CHAPTER

COMMUNICATION I:

NERVOUS AND SENSORY SYSTEMS

Outline

Neurons: The Basic Functional Units of the Nervous System Neuron Structure: The Key to Function Neuron Communication Resting Membrane Potential Mechanism of Neuron Action Transmission of the Action Potential

Between Cells Invertebrate Nervous Systems

Vertebrate Nervous Systems
The Spinal Cord
Spinal Nerves
The Brain

The Brain Cranial Nerves The Autonomic Nervous System Sensory Reception Invertebrate Sensory Receptors

Baroreceptors Chemoreceptors Georeceptors Hygroreceptors Phonoreceptors

Phonoreceptors
Photoreceptors
Proprisceptor
Tactile Receptors
Thermoreceptors
Thermoreceptors
Lateral-Line System and Electrical Sensing
Lateral-Line System and
Mechanoreception
Heiring and Equilibrium in Air
Heiring and Equilibrium in Water

Hearing and Equilibrium in Water Skin Sensors of Damaging Stimuli Skin Sensors of Heat and Cold Skin Sensors of Mechanical Stimuli

- The nervous system helps to communicate, integrate, and coordinate the functions of
 the various organs and organ systems in the animal body.
 Information flow through the nervous system has three main steps. (1) the collection of
 information from ourside and inside the body (sensory activities). (2) the processing of
- this information in the nervous system, and (3) the initiation of appropriate responding formation is transmitted between neurons directly (electrically) or by means of control of the co
- Information is transmitted between neurons directly (electrically) or by means of chemicals called neurotransmitters.
 The evolution of the nervous system in invertebrates has led to the elaboration of organized nerve cords and the centralization of responses in the anterior portion of the animal.
 The vertebrate nervous system consists of the central nervous system, made up of the brain and spinal cord, and the peripheral nervous system, composed of the nerves in the
- brain and spiral cord, and the peripheral nervous system, composes or the nerves in the rest of the body.

 Nervous systems evolved through the gradual layering of additional nervous fissue over reflex pathways of more ancient origin.

 Sensor receptors or organs permit an animal to detect changes in its body, as well as in objects and events in the world around it. Sensor receptors collect information that is then passed to the nervous system, which determines, evaluates, and initiates an appro-
- the passes of the roots system, which extrinings examines, and angles printer response.

 8. Sensory receptors initiate nerve impulses by opening channels in sensory neuron plasma membranes, depolariting the membranes, and causing a generator potential. Receptors differ in the nature of the environmental stimulus that triggers an eventual nerve impulse
- 9. Many kinds of receptors have evolved among invertebrates and vertebrates, and each receptor is sensitive to a specific type of stimulu-
- The nature of its sensory receptors gives each animal species a unique perception of its body and environment.

The two forms of communication in an animal that integrate body functions to maintain The two forms of communication in an animal that integrate body functions to maintain homeostasis are; (1) neurons, which transmit electrical signals that report information or initiate a quick response in a specific tissue; and (2) hormones, which are slower, chemical signals that initiate a widespread, prolonged response, often in a variety of tissues. This chapter focuses on the function of the neuron, the anatomical organization of the nervous system in animals, and the ways in which the senses collect information and transmit it along nerves to the central nervous system. To conclude the study of communication, chapter 25 examines how hormones affect long-term changes in an animal's body.

This chapter contains evolutionary concepts, which are set off in this font.

ONLINE LEARNING CENTER

The Online Learning Center hosts specific study tools for each chapter, which are summarized at the end of each text chapter.

KEY TERMS

The most important terms from each chapter are linked to the text pages where they are defined, for further study.

PART TWO Animal-like Protists and Animalia

WILDLIFE ALERT BOXES

These boxes feature issues related to endangered and threatened species of animals.

WILDLIFE ALERT

Coral Reefs

Coral reefs are among the most threat-ened marine habitats. Along with tropical rain forests, they are among the most diverse ecosystems on the the most diverse ecosystems on the earth. They are home to thousands of species of fish, and nearly 100,000 species of fish, and nearly 100,000 species of red invertebrates have been described to date (box figure 9.1). This diversity gives coral reefs tremendous intrinsic and economic value. Their highly productive waters yield flour to eight million tone of fish for commercial fisheries. This is one-tenth of the world's total fish harvest, from an area that represents only 0.17% of the occun surface flows figure 9.2. Coral reefs attract billions of dollars' worth of tourist trade each year. The ecological, aesthetic, and economic reasons for preserving coral reefs are overwhelming.

whelming.

Disturbances of coral reefs can be devastating, because reefs grow-very slowly. Normally a coral reef is alive with color. A disturber of turns white as a result of the death of anthracoan polyty, acocambellae (dinoflagellate protists that live in a mutualistic relationship with the anthracoans), and coralline alage (box figure 9.3). This bleaching reac-tion of a coral reef, if it results from a local disturbance, can be reversed rather quickly. Large-scale disturbances, however, can result in the death of large expanses of coral reef, which requires thousands of years to recover. In recent years, massive bleaching has been reported in tropical waters of the Atlantic, Caribbean, Pacific, and Indian Oceans. Reefs require clean, constantly warm, shallow water to support the growth of zoxoanthellae, which sustain coral anthrosans. Changing wa-ter levels, water temperature, and turbidity; can adversely affect reef growth. Sedimentation from mining, deedging, and logging, or clearing anangrove swamps that trap sediment from costal unoff, can block sun-light and result in the death of zoxoanthellae. Some island communities mine coral reefs to extract limestone for concrete. Cosstal development Disturbances of coral reefs can be devastating, because reefs gro

mine coral reefs to extract limestone for concrete. Coastal development results in sewage and industrial pollution, which have damaged coral

BOX FIGURE 9.2 Coral Reefs.

and 30°S tuttuaces.

reefs. Oil spills are toxic to coral organisms. Ships that run aground damage large sections of coral reefs. Altered ecological relationships have resulted in the proliferation of the crown-of-thorns sea star (Acambiaster plane), which feeds on coral polyps and devastates reef commisties of the South Placific. Snotklers and scuba divers who walk across reef surfaces, break off pieces of reef, or anchor their boats on reefs similarly threaten reef life. Recently, global warming (see chapter 0) has been implicated in reef bleaching. The results of global warming—changing water temperature, changing water levels, and increased frequency of tropical storms—have the potential to damage coral reefs by altering environmental conditions favorable for reef survival and growth.

The threats to coral reefs seem almost overwhelming, Fortmately, biologists are finding that coral reefs are resilient ecosystems. If water quality is good, coral reefs can recover from local disturbances. National and international policies are needed that will prevent disturbances,

FIGURE 9.1 A Coral Reef Ecosystem.

BOX FIGURE 9.3 Coral Bleaching. The bleached portion of the coral is shown in the lower portion of this photograph. The polyps in the upper portion of the photograph are still alive.

CHAPTER 5 Evolution and Gene Frequencies

EVOLUTIONARY INSIGHTS

When Charles Darwin visited the Galápagos Islands in 1835, he observed the dark-bodied finches whose adaptive radiation has become a classic example of speciation (box figure 5-1). Studies of these finches have provided imaght into some of the ways in which speciation can occur. Peter R. and B. Rosemary Grant have been studying these finches for more than 50 years. They have directly observed microevolutionary change reflected in bill morphology in response to change in rainfall and food availability. Other molecular studies have also contributed to our knowledge of the adaptive radiation of this group of binds.

hirds. Molecular studies have identified the most likely South American relatives of Darwin's finches, members of the grassquit gerus Taris. Comparisons of the mitochondrial DNA of this group with Darwin's finches suggest that the latter colonied some of the Califpagos Islands not more than 3 million years ago. A very rapid adaptive radiation occurred, with the number of finch species disubling approximately every 750,000 years. No other group of brids studied has undergone a more rapid evolutionary diversification (see figure 4.4). Darwin's finches have served as a model to answer questions of how and why species diverge.

caverage.

The traditional explanation of speciation within Darwin's finches is based on the allopatric model discussed in this chapter. This explanation is based upon differences in food resources, and the observations of the Grants have provided support for this model. Geographic isolation

of populations of finches on different islands promoted speciation as these populations were influenced by natural selection and genetic fuff. Each population adapted to the food resources available in their habitat (see figure 4.6). Most of these adaptations are reflected in bill

drift. Each population adapted to the food resources available in their habitat (see figure 4.6). Most of these adaptations are reflected in bill morphology.

The Grants have discovered, however, that the allopatric model is not the entire explanation for finch adaptive radiation. Three million years ago, the Galfagages Islands were much simpler than they are today. In fact, there were fewer islands when they were first colonized by finches. Apparently the number of finch species increased as the number of islands increased as a result of volcanic activity. The increasing number of islands and oscillations in temperature and precipitation naturally affected vegetation. Habitats available for finches became more diverse and complex. The original warm, wet islands fivored long, narrow bills that were used in gathering nectur and insects. The increasing diversity in habitats and food supply over 3 million years aparently promoted very rapid speciation among the finch populations.

The Grants have also discovered that sympatric forces probably have also promoted speciation. Different species of finches hat live on the same island mrely hybridite. Lack of hybridization promotes isolation and speciation. Genetic incomputability of gametes is apparently not the factor that discourages hybridization. Cuturship behaviors of different species are similar, so courship differences are not responsible.

Speciation of Darwin's Finches. Speciation and adaptive radiation of Darwin's finches have been used as a classic example of allopattic speciation. Isolation of finches on different islands, and difference is fixed resources on those islands, selected for morphological differences in fixed helics. For example, (of) the warbler finch (Cerelikae sizacea) has a bill that is adapted for probing for insects, and (0) the large ground finch (Georgia magniorant) has a bit that is adapted for crushing needs. Recent studies show that increasing numbers of lainfus over the lar 3 million years and changes in temperature and precipitation resoluted in very rapid speciation. Support in diffusion, synaparic influences regarding the role of the males' sogi and bill that speciation for the probability and probability an

EVOLUTIONARY INSIGHTS

These new boxes provide detailed examples of principles covered in a chapter and provide insight into how evolutionary biology works.

BRIEF CONTENTS

Preface xii Online Learning Center xvi Guided Tour xviii

PART ONE BIOLOGICAL PRINCIPLES 1

- 1 Zoology: An Evolutionary and Ecological Perspective 2
- 2 Cells, Tissues, Organs, and Organ Systems of Animals 9
- 3 Cell Division and Inheritance 31
- 4 Evolution: History and Evidence 51
- 5 Evolution and Gene Frequencies 67
- 6 Ecology: Preserving the Animal Kingdom 80

PART TWO

animal-like protists and animalia 95

- 7 Animal Classification, Phylogeny, and Organization 96
- 8 Animal-like Protists: The Protozoa 111
- 9 Multicellular and Tissue Levels of Organization 127
- 10 The Triploblastic, Acoelomate Body Plan 148
- 11 The Pseudocoelomate Body Plan: Aschelminths 164
- 12 Molluscan Success 179
- 13 Annelida: The Metameric Body Form 199
- 14 The Arthropods: Blueprint for Success 214
- 15 The Hexapods and Myriapods: Terrestrial Triumphs 234
- 16 The Echinoderms 251
- 17 Hemichordata and Invertebrate Chordates 265
- 18 The Fishes: Vertebrate Success in Water 276

- 19 Amphibians: The First Terrestrial Vertebrates 296
- 20 Reptiles: The First Amniotes 312
- 21 Birds: Feathers, Flight, and Endothermy 326
- 22 Mammals: Specialized Teeth, Hair, Endothermy, and Viviparity 342

PART THREE

FORM AND FUNCTION: A COMPARATIVE PERSPECTIVE 359

- 23 Protection, Support, and Movement 360
- 24 Communication I: Nervous and Sensory Systems 379
- 25 Communication II: The Endocrine System and Chemical Messengers 406
- 26 Circulation and Gas Exchange 424
- 27 Nutrition and Digestion 443
- 28 Temperature and Body Fluid Regulation 464
- 29 Reproduction and Development 483
- 30 The Chemical Basis of Animal Life*
- 31 Energy and Enzymes: Life's Driving and Controlling Forces*
- 32 How Animals Harvest Energy Stored in Nutrients*
- 33 Embryology*
- 34 Animal Behavior*

Glossary 502 Credits 531 Index 535

*This chapter is available at www.mhhe.com/zoology (click on this book's cover).

CONTENTS

Preface xii Online Learning Center xvi Guided Tour xviii

PART ONE

BIOLOGICAL PRINCIPLES 1

Chapter 1

ZOOLOGY: AN EVOLUTIONARY AND ECOLOGICAL PERSPECTIVE 2

Outline 2 Concepts 2

Zoology: An Evolutionary Perspective 3 Zoology: An Ecological Perspective 5

WILDLIFE ALERT—AN OVERVIEW OF THE PROBLEMS 7

Summary 8
Selected Key Terms 8
Critical Thinking Questions 8
Online Learning Center 8

Chapter 2

CELLS, TISSUES, ORGANS, AND ORGAN SYSTEMS OF ANIMALS

Outline 9 Concepts 9

What Are Cells? 9

Why Are Most Cells Small? 10

Cell Membranes 11

Movement Across Membranes 13

Cytoplasm, Organelles, and Cellular Components 16

The Nucleus: Information Center 22

Levels of Organization in Various Animals 23

Tissues 23

EVOLUTIONARY INSIGHTS—THE ORIGIN OF EUKARYOTIC CELLS 28

Organs 29 Organ Systems 29

Summary 29 Selected Key Terms 30

Critical Thinking Questions 30

Online Learning Center 30

Chapter 3

CELL DIVISION AND INHERITANCE 31

Outline 31

Concepts 31

Eukaryotic Chromosomes 32

Mitotic Cell Division 33

Meiosis: The Basis of Sexual Reproduction 35

DNA: The Genetic Material 37

Inheritance Patterns in Animals 41

WILDLIFE ALERT—PRESERVING GENETIC DIVERSITY 48

Summary 48

Selected Key Terms 49

Critical Thinking Questions 49

Online Learning Center 49

Chapter 4

EVOLUTION: HISTORY AND EVIDENCE 51

Outline 51

Concepts 51

Pre-Darwinian Theories of Change 52

Darwin's Early Years and His Journey 52

Early Development of Darwin's Ideas of Evolution 53

The Theory of Evolution by Natural Selection 55

Microevolution, Macroevolution, and Evidence

of Macroevolutionary Change 58

EVOLUTIONARY INSIGHTS—AN EXAMPLE FROM BIG-CAT BIOGEOGRAPHY 65

Summary 65

Selected Key Terms 66

Critical Thinking Questions 66

Online Learning Center 66

Chapter 5

EVOLUTION AND GENE FREQUENCIES 67

Outline 67

Concepts 67

Populations and Gene Pools 68

Must Evolution Happen? 68

Evolutionary Mechanisms 68

Species and Speciation 73

Rates of Evolution 75

Molecular Evolution 76

Mosaic Evolution 76

EVOLUTIONARY INSIGHTS—SPECIATION OF DARWIN'S FINCHES 77

Summary 78

Selected Key Terms 78 Critical Thinking Questions 78 Online Learning Center 78

Chapter 6 ECOLOGY: PRESERVING THE ANIMAL KINGDOM 80

Outline 80
Concepts 80
Animals and Their Abiotic Environment 81
Populations 82
Interspecific Interactions 83
Communities 86

Trophic Structure of Ecosystems 87
Cycling Within Ecosystems 87

Ecological Problems 87

WILDLIFE ALERT—KIRTLAND'S WARBLER (DENDROICA KIRTLANDII) 92

Summary 93
Selected Key Terms 93
Critical Thinking Questions 93
Online Learning Center 93

PART TWO

ANIMAL-LIKE PROTISTS AND ANIMALIA 95

Chapter 7

ANIMAL CLASSIFICATION, PHYLOGENY, AND ORGANIZATION 96

Outline 96
Concepts 96
Classification of Organisms 97
Evolutionary Relationships and Tree Diagrams 102
Patterns of Organization 103
Higher Animal Taxonomy 107

EVOLUTIONARY INSIGHTS—ANIMAL ORIGINS 109

Summary 110 Selected Key Terms 110 Critical Thinking Questions 110 Online Learning Center 110

Chapter 8

ANIMAL-LIKE PROTISTS: THE PROTOZOA 111

Outline 111 Concepts 111 Evolutionary Perspective 111 Life Within a Single Plasma Membrane 1
Symbiotic Lifestyles 113
Protozoan Taxonomy 114
Phylum Sarcomastigophora 114
Phylum Labyrinthomorpha 119
Phylum Apicomplexa 120
Phylum Microspora 121
Phylum Acetospora 121
Phylum Myxozoa 121
Phylum Ciliophora 122

Further Phylogenetic Considerations 124

EVOLUTIONARY INSIGHTS—THE ANIMAL-LIKE PROTISTS MAY LIE AT THE CROSSROADS BETWEEN THE SIMPLER AND THE COMPLEX 125

Summary 126 Selected Key Terms 126 Critical Thinking Questions 126 Online Learning Center 126

Chapter 9

MULTICELLULAR AND TISSUE LEVELS OF ORGANIZATION 127

Outline 127 Concepts 127 Evolutionary Perspective 127 Phylum Porifera 128 Phylum Cnidaria 134 Phylum Ctenophora 143

WILDLIFE ALERT—CORAL REEFS 144

Further Phylogenetic Considerations 145 Summary 146 Selected Key Terms 146 Critical Thinking Questions 146 Online Learning Center 146

Chapter 10

THE TRIPLOBLASTIC, ACOELOMATE BODY PLAN 148

Outline 148
Concepts 148
Evolutionary Perspective 148
Phylum Platyhelminthes 149
Phylum Nemertea 160
Phylum Gastrotricha 161
Further Phylogenetic Considerations 161

EVOLUTIONARY INSIGHTS—THE FLATWORMS ARE THE FIRST CARNIVOROUS HUNTERS 162

Summary 163
Selected Key Terms 163
Critical Thinking Questions 163
Online Learning Center 163

Chapter 11

THE PSEUDOCOELOMATE BODY PLAN: ASCHELMINTHS 164

Outline 164

Concepts 164

Evolutionary Perspective 164

General Characteristics 165

Phylum Rotifera 166

Phylum Kinorhyncha 169

Phylum Nematoda 169

Phylum Nematomorpha 175

Phylum Acanthocephala 175

Phylum Loricifera 175

Phylum Priapulida 176

Further Phylogenetic Considerations 177

EVOLUTIONARY INSIGHTS—WHAT ARE WORMS? 177

Summary 178

Selected Key Terms 178

Critical Thinking Questions 178

Online Learning Center 178

Chapter 12

MOLLUSCAN SUCCESS 179

Outline 179

Concepts 179

Evolutionary Perspective 179

Molluscan Characteristics 180

Class Gastropoda 183

Class Bivalvia 185

Class Cephalopoda 191

Class Polyplacophora 193

Class Scaphopoda 194

Class Monoplacophora 194

WILDLIFE ALERT—FAT POCKETBOOK MUSSEL (POTAMILUS CAPAX) 195

Class Aplacophora 196

Further Phylogenetic Considerations 197

Summary 197

Selected Key Terms 197

Critical Thinking Questions 197

Online Learning Center 198

Chapter 13

ANNELIDA: THE METAMERIC BODY FORM 199

Outline 199

Concepts 199

Evolutionary Perspective 199

Class Polychaeta 202

Class Clitellata 207

Further Phylogenetic Considerations 211

EVOLUTIONARY INSIGHTS—ANNELIDA: A TAXONOMIST'S VERMICELLI SOUP 212

Summary 212

Selected Key Terms 213

Critical Thinking Questions 213

Online Learning Center 213

Chapter 14

THE ARTHROPODS: BLUEPRINT FOR SUCCESS 214

Outline 214

Concepts 214

Evolutionary Perspective 214

Metamerism and Tagmatization 215

The Exoskeleton 216

The Hemocoel 217

Metamorphosis 218

Subphylum Trilobitomorpha 218

Subphylum Chelicerata 218

Subphylum Crustacea 225

WILDLIFE ALERT—A CAVE CRAYFISH (CAMBARUS ACULABRUM) 230

Further Phylogenetic Considerations 232

Summary 232

Selected Key Terms 233

Critical Thinking Questions 233

Online Learning Center 233

Chapter 15

THE HEXAPODS AND MYRIAPODS: TERRESTRIAL TRIUMPHS 234

Outline 234

Concepts 234

Evolutionary Perspective 234

Subphylum Myriapoda 235

Subphylum Hexapoda 238

Further Phylogenetic Considerations 247

WILDLIFE ALERT—THE KARNER BLUE BUTTERFLY (LYCAEIDES MELISSA SAMUELIS) 248

Summary 249

Selected Key Terms 249

Critical Thinking Questions 250

Online Learning Center 250

Chapter 16

THE ECHINODERMS 251

Outline 251

Concepts 251

Evolutionary Perspective 251

Echinoderm Characteristics 252

Class Asteroidea 253 Class Ophiuroidea 256 Class Echinoidea 258 Class Holothuroidea 259 Class Crinoidea 260

WILDLIFE ALERT—IMPERILED SEA CUCUMBERS (ISOTICHOPUS FUSCUS) 261

Further Phylogenetic Considerations 262
Summary 264
Selected Key Terms 264
Critical Thinking Questions 264
Online Learning Center 264

Chapter 17

HEMICHORDATA AND INVERTEBRATE CHORDATES 265

Outline 265
Concepts 265
Evolutionary Perspective 265
Phylum Hemichordata 266
Phylum Chordata 269
Further Phylogenetic Considerations 272

EVOLUTIONARY INSIGHTS—EARLY DEUTEROSTOME EVOLUTION 274

Summary 274
Selected Key Terms 275
Critical Thinking Questions 275
Online Learning Center 275

Chapter 18

THE FISHES: VERTEBRATE SUCCESS IN WATER 276

Outline 276
Concepts 276
Evolutionary Perspective 276
Survey of Fishes 278
Evolutionary Pressures 285
Further Phylogenetic Considerations 292

WILDLIFE ALERT—THE PALLID STURGEON (SCAPHIRHYNCHUS ALBUS) 293

Summary 294
Selected Key Terms 294
Critical Thinking Questions 294
Online Learning Center 294

Chapter 19

AMPHIBIANS: THE FIRST TERRESTRIAL VERTEBRATES 296

Outline 296 Concepts 296 Evolutionary Perspective 296 Survey of Amphibians 297 Evolutionary Pressures 299

WILDLIFE ALERT—RED HILLS SALAMANDER (PHAEOGNATHUS HUBRICHTI) 309

Amphibians in Peril 309
Further Phylogenetic Considerations 310
Summary 310
Selected Key Terms 310
Critical Thinking Questions 310
Online Learning Center 311

Chapter 20

REPTILES: THE FIRST AMNIOTES 312

Outline 312
Concepts 312
Evolutionary Perspective 312
Survey of the Reptiles 314
Evolutionary Pressures 318
Further Phylogenetic Considerations 323

WILDLIFE ALERT—KEMP'S RIDLEY SEA TURTLE (LEPIDOCHELYS KEMPII) 324

Summary 325
Selected Key Terms 325
Critical Thinking Questions 325
Online Learning Center 325

Chapter 21

BIRDS: FEATHERS, FLIGHT, AND ENDOTHERMY 326

Outline 326 Concepts 326 Evolutionary Perspective 326 Evolutionary Pressures 328

WILDLIFE ALERT—RED-COCKADED WOODPECKER (PICOIDES BOREALIS) 340

Summary 341 Selected Key Terms 341 Critical Thinking Questions 341 Online Learning Center 341

Chapter 22

MAMMALS: SPECIALIZED TEETH, HAIR, ENDOTHERMY, AND VIVIPARITY 342

Outline 342
Concepts 342
Evolutionary Perspective 342
Diversity of Mammals 343
Evolutionary Pressures 347

WILDLIFE ALERT—THE SOUTHERN (CALIFORNIA) SEA OTTER (ENHYDRA LUTRIS NEREIS) 356

Summary 358 Selected Key Terms 358 Critical Thinking Questions 358 Online Learning Center 358

PART THREE

FORM AND FUNCTION: A COMPARATIVE PERSPECTIVE 359

365

Chapter 23

Outline 360

PROTECTION, SUPPORT, AND MOVEMENT 360

Concepts 360 Protection: Integumentary Systems 360 Movement and Support: Skeletal Systems

Movement: Nonmuscular Movement and Muscular Systems 369

Summary 377

Selected Key Terms 377

Critical Thinking Questions 378 Online Learning Center 378

Chapter 24

COMMUNICATION I: NERVOUS AND SENSORY SYSTEMS 379

Outline 379 Concepts 379

Neurons: The Basic Functional Units of the Nervous System 380

Neuron Communication 381 Invertebrate Nervous Systems 383 Vertebrate Nervous Systems 386 Sensory Reception 391 Invertebrate Sensory Receptors 391 Vertebrate Sensory Receptors 395

Summary 404

Selected Key Terms 405

Critical Thinking Questions 405

Online Learning Center 405

Chapter 25

COMMUNICATION II: THE ENDOCRINE SYSTEM AND CHEMICAL MESSENGERS 406

Outline 406 Concepts 406 Chemical Messengers 407

Hormones and Their Feedback Systems 407

Mechanisms of Hormone Action 408

Some Hormones of Invertebrates 409

An Overview of the Vertebrate Endocrine System 412

Endocrine Systems of Vertebrates Other Than Birds

or Mammals 412

Endocrine Systems of Birds and Mammals 415

Summary 422

Selected Key Terms 423

Critical Thinking Questions 423

Online Learning Center 423

Chapter 26

CIRCULATION AND GAS EXCHANGE 424

Outline 424 Concepts 424

Internal Transport and Circulatory Systems 424

Gas Exchange 433

Summary 441

Selected Key Terms 441

Critical Thinking Questions 441

Online Learning Center 441

Chapter 27

NUTRITION AND DIGESTION 443

Outline 443

Concepts 443

Evolution of Nutrition 444

The Metabolic Fates of Nutrients in Heterotrophs 444

Digestion 446

Animal Strategies for Getting and Using Food 446

Diversity in Digestive Structures: Invertebrates 449

Diversity in Digestive Structures: Vertebrates 452

The Mammalian Digestive System 456

Summary 463

Selected Key Terms 463

Critical Thinking Questions 463

Online Learning Center 463

Chapter 28

TEMPERATURE AND BODY FLUID REGULATION 464

Outline 464 Concepts 464

Homeostasis and Temperature Regulation 464

Control of Water and Solutes (Osmoregulation

and Excretion) 470

Invertebrate Excretory Systems 472

Vertebrate Excretory Systems 474