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Preface

The book is a collection of selected papers from the 18th WIRN workshop, the annual
meeting of the Italian Neural Networks Society (SIREN). As 18 marks the year young
people come of age in Italy, the Society invited two generations of researchers to par-
ticipate in a common discussion: those new to the field and those with extensive fa-
miliarity with the neural paradigm. The challenge lay in understanding what remains of
the revolutionary ideas from which neural networks stemmed in the eighties, how these
networks have evolved and influenced other research fields, and ultimately what are the
new conceptual/methodological frontiers to trespass for a better exploitation of the in-
formation carried by data.

From this discussion we selected 27 papers which have been gathered under two
general headings, “Models” and “Applications,” plus two specific ones, “Economy and
Complexity” and “Remote Sensing Image Processing.” The editors would like to thank
the invited speakers as well as all those who contributed to the success of the work-
shops with papers of outstanding quality. Finally, special thanks go to the referees for
their valuable input.

We are also pleased that non-SIREN member researchers joined us both at the
meeting and in this editorial venture, bearing witness to a wide sphere of interest in the
debate. We hope, moreover, that the book will serve in making a scientific contribution
to the discovery of new forms of cooperative work — so necessary today for the inven-
tion of efficient computational systems and new social paradigms too.

November 2008 Bruno Apolloni
Simone Bassis
Maria Marinaro
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A Neural Based WSN Mote Trajectory
Reconstruction for Mining Periodic
Patterns

Alfredo PETROSINO 2and Antonino STAIANO 2!

2 Dipartimento di Scienze Applicate, Universita di Napoli "Parthenope”
Centro Direzionale - Isola C4, I-80143 Napoli, Italy

Abstract. The problem of reconstruction and mining object trajectories is of inter-
est in the applications of mining transport enterprise data concerning with the route
followed by its delivery vans in order to optimize time and space deliveries. The
paper investigates the case of Wireless Sensor Network (WSN) technology, not pri-
marily designed for localization, and reports a technique based on recurrent neural
networks to reconstruct the trajectory shape of a moving object (a sensor on a Lego
train) from the sensor accelerometer data and to recover its localization. The ob-
tained patterns are thus mined to detecting periodic or frequent patterns, exploiting
a recently proposed technique based on clustering algorithms and associative rules
to assert the ability of the proposed approach to track WSN mote localizations.

Keywords. Wireless Sensor Networks, Spatio-Temporal Data mining, Recurrent
Neural Networks

Introduction

The efficient management of spatio-temporal data has gained much interest during the
past few years [7,2], mainly due to the rapid advancement in telecommunications which
facilitate the collection of large data set of such information. Management and analysis
of moving object irajectories are challenging due to the vast amount of collected data
and novel types of spatio-temporal queries [5]. In many applications, the movements
obey periodic patterns, i.e., the objects follow the same routes (approximately) over reg-
ular time intervals. Objects that follow approximate periodic patterns include transporta-
tion vehicles (buses, boats, airplanes, trains, etc.), animals, mobile phone users, etc. The
problem of discovering periodic patterns from historical object movements is very chal-
lenging. Usually, the patterns are not explicitly specified, but have to be discovered from
the data. The approximate nature of patterns in the spatio-temporal domain increases the
complexity of the mining tasks.

One of the most challenging problems is how discovering periodic patterns from
historical object movements, in an independent manner from the adopted technology

!Corresponding  Author: Antonino  Staiano, Dipartimento di  Scienze Applicate, Universita
di Napoli "Parthenope®, Centro Direzionale - Isola C4, 1-80143 Napoli, Italy; E-mail:
antonino.staiano @uniparthenope.it.
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that not always may assure the complete covering of the object localizations. As known,
a possible solution is to let mobile nodes deploy expensive global positioning systems
(GPS) to get their locations. However, many applications require sensor network mobility
in the environments where GPS signals may not be available, therefore a GPS solution
is not feasible. In recent years Wireless Sensor Networks (WSNs) have emerged as one
of the key enablers for a variety of applications such as environment monitoring, vehicle
tracking and mapping, and emergency response [8]. The network of such devices, called
sensor network, forms a distributed and adaptive platform for data gathering, fusion and
aggregation of the observed process.

In this paper we focus our attention on two important and related issues concerning
with the tracking of a moving object by adopting WSNs. The aim is to develop and
study a small scale system from which to derive, although with some assumptions and
constraints, the trajectory of a WSN single moving sensor placed on a Lego train and to
mine the periodic patterns from the reconstructed trajectory,

The first issue is how to locate a node’s (a moving sensor) position. Although many
localization algorithms have been proposed for wireless sensor networks, they assume
that the nodes inside the networks are static. Little research has been presented on con-
sidering localization in cases where the network cannot be assumed static (see [9] and
references therein). Here we describe a procedure to gain some insights to determine the
trajectory out of acceleration reading from a moving mote located on the object. Extrap-
olating a trajectory out of acceleration is very difficult, since the accumulative error of
the accelerometer equipping the motes gets too large. If one gets a model of the train
tracks, then it might be possible to use the accelerometer information to detect the various
turns and use that to keep track of the train’s position. To highlight the proposed model
property, we made experiments by using a little Lego [10] train that follows different
controlled tracks.

The second addressed issue is to proper analyze the spatiotemporal data acquired.
Although several algorithms for mining frequent patterns in large databases have been
proved very effective for a variety of static data, no one is well suited for spatio-temporal
sequences. An interesting and effective approach is described in [2], where an algorithm
based on the well known DBScan [4] clustering method and a variant of the algorithm
Apriori-TID [1] for the analysis of associative rules is proposed.

The paper is organized as follows: in Section 1 we describe the problem of deter-
mining the trajectory out of accelerometer data and the proposed approach based on a
recurrent neural network. In Section 2, the problem of mining periodic patterns is intro-
duced and the adopted algorithms are described. Experimental results, showing how to
compute the trajectory shape and the coordinates of a Lego train equipped with a Tmote
Invent and how discover periodic patterns from the data are described in Section 3. Fi-
nally, in Section 4, some concluding remarks and the description of possible applicative
scenarios close the paper.

1. Computing trajectory coordinates
Motes are equipped with an accelerometer which provides the base station with the ac-

celeration measures on the z — —y axes. One possible solution to derive location informa-
tion from acceleration is to double integrate acceleration over time to derive the sensor
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resulting movement. However, the motes have an operating frequency at 50Hz making
them very sensitive to any vibration. Furthermore, the battery life cycle is very short so
that the accelerometer readings might differ largely even for the same piece of trajectory
in different timestamps. This introduces an overall very high noise over the signal so that
the integration leads to a very poor representation of the actual trajectory even for very
simple piece of route such as a straight line. This led us to consider the trajectory shape
reconstruction and then to derive the mote positions by adding some constraints on the
train movements on the tracks.

1.1. Trajectory reconstruction

The idea is to recognize pieces of the circuit followed by the train considering that when
the train is on a back siraight the corresponding acceleration values are near zero, if the
train is turning left the acceleration values are negatives, while if the train is turning right
the corresponding acceleration values are positives. Therefore, after a preprocessing step
to reduce noise over the acceleration signal acquired by the sensor through a FIR filter,
an Elman neural network [3,6) is used to recognize pieces of the circuit followed by the
train.

1.1.1. Elman network

The Elman network is a recurrent feed-forward neural network. Recurrent neural net-
works allows to model dynamic mappings according to which the input and output vari-
ables change over time and time is not represented explicitly but by the effect it has on
processing and not as an additional dimension of the input. This class of neural networks
are well suited, among all, for times series prediction [6]. The Elman network differs
from a classical feed-forward neural network structure for a further layer placed at the
same level of the input layer, called context unit layer (for which the weights are fixed to
1), whose task is to hold memory of the hidden layer output at the previous time instant.
Therefore, when the input is fed to te network at time ¢, its output is computed also on
the base of the hidden layer neuron activations at time £ — 1, i.e.

up = g(Wile + Wyl_, + b)) ye = f(Waug +b2) 1)

where g and f are respectively the hyperbolic tangent and logistic sigmoid functions,
W/ the weight matrix from input to hidden layers, W7’ the weight matrix from hidden
to context layers and W5 the weight matrix from hidden to output layers. The Elman
network is trained with the backpropagation to adjust the hidden-to-output weights and
the input-to-hidden weights, while the recurrent connections are fixed at 1 and are not
subject to adjustment. Qur Elman network takes, each time, an acceleration value as
input, from a training set, and tries to recognize if that value correspond to a back straight,
a left turn or a right turn on the base of the previous time instants. Each segment is coded
by a 1-of-c coding, so three output values are used to code a segment shape class (100
for back straights, 010 for left turns and 001 for right turns). The network is trained
over a data set of segments of curve of each direction taken over different real mote
trajectories and labelled by hand. Since the network gives evidence of the segment turn
but not localizations in the the corresponding z — y coordinates, we need to properly
assemble each recognized segment to obtain the shape and the coordinates of the entire
circuit.
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1.1.2. Circuit segments assembling

First of all, the train speed is assumed to be constant over the entire route making it
possible to calculate the coordinates of each recognized circuit segment. In fact, with a
constant speed, and knowing that the accelerometer sampling rate is 0.1 seconds, it is
possible to compute the coordinates for the back straights through a simple procedure.
For left and right turns, it is necessary to establish the train time to go through a left or
right curve. Here a further assumption comes, i.e., we consider that each turn is at least a
90° curve (corresponding to 4 pieces of Lego tracks) and all its multiples (180°, 270°).
Therefore, knowing that the circumference length assembled by the Lego curve tracks
(64 cm), it is possible to compute the coordinates of the 90° curve.

The procedure determines the positions of the first segment, then it recognizes the
next segment on the base of the Elman network output, and finally calculates the positions
of the recognized segment updating the route orientation. These steps are iterated for
the entire circuit. The starting point is assumed to be the (0,0) coordinate, updated by
the last location obtained for each computed segment. The orientation is updated by
considering three conditions, namely, the orientation of the previous segment, the turn
(left or right) and the dimension (90°,180°,270°). As an example, let us consider a
simple elliptic circuit assuming that the train started its path on a back straight. At first
step, the algorithm computes the locations of the first circuit segment, next it recognizes
that the train turns on the left by 180° and calculates its coordinates by combining two
90° curves. These curves are properly translated to overlap the origin of the curve with
the last location of the previous segment; the orientation is next updated. These steps are
iterated for the entire circuit. The step-wise results are shown in Figure 1.
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Figure 1. Steps of the reconstruction procedure.
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2. Periodic routes detection

The problem may be defined as follows. An object movement is defined as a n-length
sequence S of spatial locations, one for each time point ({;,t;), ¢ = 0,...n — 1, where
I is the object location at time ¢. Each location ;, is a spatial location (x;,y:). Given a
minimum support min_sup (0 < min_sup < 1) and an integer T (the period), the goal
is to discover movement patterns that repeat themselves every T time points. The pattern
is defined as a T-length sequence of the form P = rg,7y,...,7r—1, Where r; is a spatial
region or a wild-card character * indicating any region of the whole spatial universe. As
an example, the pattern ABC # x denotes that the object is in region A at the starting
point, and in the next two time intervals it is in region B and C, respectively, while in the
last two time intervals it moved irregularly (at every time point it is in a different region),
until a new cycle begins. The patterns are required to be followed by the object in at least
a (@ = min_sup - | %)) periodic intervals in S. Since it is unlikely that an object repeats
an identical sequence of (z, y) locations precisely, the exact locations are replaced by the
regions which contain them.

STPMinel (SpatioTemporal periodic Pattern Min(E)ing1) is the first algorithm for
mining periodic patterns proposed in [2] and is the one we used. In the following we
discuss it informally, the interested reader may refer to [2] for a complete description.
The algorithm is structured in two parts:

1. First, the algorithm uses DBScan clustering approach to discover 1-length pat-
terns. So doing each spatial location is assigned, in automatic way, a spatial re-
gion which is a valid cluster found to which the spatial location belongs. A valid
cluster is a cluster containing at least MinPoint elements (MinPoint is a user de-
fined parameter of the algorithm). For each cluster found a 1-length pattern is
generated.

2. Starting from the 1-length patterns of the previous step, STPMinel implements a
variant of the Apriori-TID algorithm to find, iteratively, patterns of length greater
than 1. For this aim, it generates candidate patterns joining pairs of patterns. Here,
eventually invalid candidate pattern are pruned (patterns whose subpatterns are
not frequent patterns). Once a valid candidate pattern is generated it is checked
whether its regions are still clusters. This is a validation procedure: points at
non-* candidate pattern positions could not be a valid cluster. The procedure is
iterated until no candidate patterns can formed anymore. The last valid pattern
formed will be the discovered frequent pattern.

3. Experimental results

The trajectory reconstruction approach and STPMinel algorithm for mining periodic
patterns have been tested on several circuit shapes. In the following only the obtained
results on a Z-shaped circuit (two joining ellipses, see Figure 2, corresponding to 92
spatial locations) are described.

3.1. Trajectory reconstruction

To properly comment the trajectory reconstruction results, some details on parameter
setting should be introduced.
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Table 1. Circuit segment reconstruction errors. Each column is a circuit segment, i.¢., Back straight, Right and
Left curves. The length are in cm.

90°R Bl 90°L B2 180°R B3 90°R B4 90°L B5 180°R B6

Track - 6 - 8 - 8 - 6 - 8 - 9
Length - 75 - 100 - 100 - 75 - 100 - t12.5
Ref length - 72 - 97 - 102 - 70 - 98 - 120
Error - -3 - -3 - +2 - -5 - -2 - +7.5

e Train speed. As stressed in Section 1, one assumption is the constant speed of
our train. The actual speed has been measured by an external chronometer by
considering the time necessary to go through a one meter length back straight.
Several measurements, under the same conditions, have been made. The constant
train speed was chosen as the mean speed of 1.14", over all the measurements.

e Elman network. The training sets have been obtained by acquiring the accelerom-
eter data over two laps of each considered circuit in both directions (east-west and
west-east) in order to provide the network with similar circuits with all possible
segment directions. The employed network is a one input - three output (1 of ¢
coding) network, with 15 hidden neurons (therefore 15 context unit neurons), 500
learning epochs and a threshold error set to 0.01,

After the training phase, the Elman network has been evaluated on a test set and pro-
cedures as descibed above were applied to derive the shape and locations of the entire
circuit. Figure 2 illustrates the original and the reconstructed circuit. As shown, the shape
of the reconstructed circuit is very close to the original. Table 1 shows the the recon-
struction error on each segment, corresponding to an overall error on the entire circuits
of 22.5 cm (4% of the total length).

Figure 2. The original Z-shaped circuit (left) and the reconstructed circuit (right).
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3.2. Mining frequent patterns

Starting from the circuit spatial location computed as described in Section 1, several vari-
ants of the same circuit are ncessary to find periodic patterns. Therefore, we generated,
from the circuit spatial locations, n similar pseudo-random circuits with different coor-
dinates. The STPMinel algorithm was applied to the Z-shaped circuit and its generated
variants (see Figure 3). In the following we see two different experiments where some

‘0.0 a.5 1.0 15 2.0 25 3.0

Figure 3. The Z-shaped circuits generated.

STPMinel critical parameters are changed. In particular, the parameter Eps (points min-
imum distance to find clusters) of DBScan is changed (Eps = 0.05 and Eps = 0.09) in
order to observe its impact on the discovered paiterns. Indeed, an Eps low value causes
DBScan to find just few clusters, while, on the other side, a very high value causes DB-
Scan to detect all 1—length pattern as one cluster. Obviously, this latter case implies high
time costs. In Table 2, the results for Esp = 0.05 are reported. It is interesting to note the
computing time and a frequent pattern of reduced size with respect to the length of the
timestamps (92) of the circuit. In Table 3, instead, DBScan carries out a more accurate
cluster detection, so the algorithm is able to detect the entire 92 timestamps of the circuit
as periodic pattern.



