C ONTEMPORARY

MATHEMATICS

Combinatorial
and Geometric
Representation Theory

An International Conference on
Combinatorial and Geometric Representation Theory
October 22-26, 2001
Seoul National University, Seoul, Korea

Seok-Jin Kang
Kyu-Hwan Lee
Editors

American Mathematical Society



C ONTEMPORARY
IMATHEMATICS

325

Combinatorial
and Geometric
Representation Theory

An International Conference on
Combinatorial and Geometric Representation Theory
October 22-26, 2001
Seoul National University, Seoul, Korea

Seok-Jin Kang
Kyu-Hwan Lee
Editors

American Mathematical Society
Providence, Rhode Island



Editorial Board
Dennis DeTurck, managing editor
Andreas Blass Andy R. Magid Michael Vogelius

This volume represents the proceedings of an international conference on Combinatorial
and Geometric Representation Theory that was held at Seoul National University, Seoul,
Korea, from October 22 26, 2001.

2000 Mathematics Subject Classification. Primary 05Exx, 14Lxx, 16Gxx, 17Bxx, 20Cxx,
20Gxx, 81Rxx.

Library of Congress Cataloging-in-Publication Data

Combinatorial and geometric representation theory : an international conference on combinato-
rial and geometric representation theory, October 22-26, 2001, Seoul National University, Seoul,
Korea / Seok-Jin Kang, Kyu-Hwan Lee, editors.
p. cm. (Contemporary mathematics, ISSN 0271-4132 ; 325)

Includes bibliographical references.

ISBN 0-8218-3212-3 (alk. paper)

1. Representations of groups—Congresses. 2. Representations of algebras—Congresses.
3. Combinatorial analysis— Congresses. 4. Geometry —Congresses. 1. Kang, Seok-Jin. 1I. Lee.
Kyu-Hwan. 1970 III. Contemporary mathematics (American Mathematical Society) ; v. 325.

QA176.C66 2001
512/.2 —~dc21 2002041753

Copying and reprinting. Material in this book may be reproduced by any means for edu-
cational and scientific purposes without fee or permission with the exception of reproduction by
services that collect fees for delivery of documents and provided that the customary acknowledg-
ment of the source is given. This consent does not extend to other kinds of copying for general
distribution, for advertising or promotional purposes, or for resale. Requests for permission for
commercial use of material should be addressed to the Acquisitions Department, American Math-
cmatical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can
also be made by e-mail to reprint-permission@ams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In
such cases. requests for permission to use or reprint should be addressed directly to the author(s).
(Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of
cach article.)

(© 2003 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.

@ The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://wuw.ams.org/

10987654321 08 07 06 05 04 03



Combinatorial
and Geometric
Representation Theory



Preface

This volume is the refereed proceedings of the international conference on
“Combinatorial and Geometric Representation Theory” that was held at Seoul
National University, Seoul, Korea, from October 22nd to October 26th, 2001.

In the area of representation theory, a wide variety of mathematical ideas has
been combined together to provide new insights into the field, powerful methods
of understanding the theory, and various applications to other branches of math-
ematics. Over the past two decades, there have been remarkable developments in
representation theory based on combinatorial and geometric approaches.

The theme of this conference was to bring together various ideas from com-
binatorial and geometric aspects of representation theory and discuss the recent
developments in this active field of research. We hope this conference served as a
good opportunity to understand strong connections between combinatorics, geom-
etry and representation theory.

We are very grateful to all the invited speakers and participants for their ex-
cellent lectures, contributed papers and great enthusiasm. We would also like to
thank graduate students of Seoul National University for their assistance during the
conference. Special thanks should be given to Professors Young-Hyun Cho. Myung-
Hwan Kim and In-Sok Lee who served as members of the organizing committee of
this conference.

This conference was supported by KOSEF Grant 98-0701-01-5-L. We greatly
appreciate their financial and moral support. Finally, we would like to express our
gratitude to all the referees for their invaluable help with the contributed papers.

Seok-Jin Kang

Kyu-Hwan Lee
Editors
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Twisted Verma modules and their quantized analogues

Henning Haahr Andersen

1. Introduction

In [AL] we studied twisted Verma modules for a finite dimensional semisim-
ple complex Lie algebra g. In fact, we gave three rather different constructions
which we showed lead to the same modules. Here we shall briefly recall one of
these approaches - the one based on Arkhipov’s twisting functors [Ar]. We then
demonstrate that this construction can also be used for the quantized enveloping
algebra U,(g).

In analogy with their classical counterparts the quantized twisted Verma mod-
ules belong to the category O, for U,(g) and have the same composition factors as
the ordinary Verma modules for U,(g). They also possess Jantzen type filtrations
with corresponding sum formulae.

I would like to thank Catharina Stroppel and Niels Lauritzen for some very
helpful comments.

2. The classical case

2.1. Let h denote a Cartan subalgebra of g and choose a set R of positive
roots in the root system R attached to (g.h). Then we have the usual triangular
decomposition g = n~ GhEn' of g with nt (respectively n™) denoting the nilpotent
subalgebra corresponding to the positive (respectively negative) roots.

We set b = h @ nt and write U = U(g) and B = U(b) for the enveloping
algebras of g and b. Then the Verma module corresponding to A € h* is defined as

M) =U®pCy,
where C) is the 1-dimensional B-module obtained by composing A with the projec-
tion b — b.
Supported in part by the TMR programme “Algebraic Lie Representations” (ECM Network Con-

tract No. ERB FMRX-CT 97/0100)
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2 HENNING HAAHR ANDERSEN

2.2.  For cach w in the Weyl group W we constructed in [AL] a twisted Verma
module M™(\). We shall now briefly recall one of the constructions of M™(\).

First we associate to w a semiregular module S,,. It is defined by considering
the subalgebra n,, = n~ Nw~!(n*) of n~ and its corresponding enveloping algebra
N, = U(ny). The standard ZR-grading on U and its associated Z-grading U =

& U,, obtained via the natural height function ZR — Z allow us to define the
mez
graded dual module N = € Home((Ny) -1, C). Then as a left U-module S, is

meZ
defined by
Sw=U®n, Ny
This definition uses the left N,,-module structure on N, given by (xf)(n) = f(nx),
n,v € Ny, f € N¥. The corresponding right N,,-module structure on N} makes
also S, into a right NV,,-module. It is an important fact that this extends to a right
U-module structure on S,,. For an explicit proof of this, see [So].
The twisting functor T, on the category of U-modules is then defined by

TUV(A[) = ¢ll}(S‘1U ®U A[),

when M is a U-module. Here ¢,, is conjugation by an element in Aut(g) corre-
sponding to w.
The twisted Verma module M™(A) is finally defined as

MY(X) = T (M(w™t - X)).
We use here the dot action of W on b* given by w - A = w(A + p) — p, p being half
the sum of the positive roots.
2.3. Note that if e € W is the neutral element then T, is the identity functor.
In fact, n. =0 and so S, = U ®; k = U. Hence we have
(1) M€¢(A) = M()\) for all X € h*.

Let O denote the BGG-category for (g.b). If M € O we write chM for the
character of M. We let D : O — O denote the duality functor which satisfies
chDM = chM for all M € O. Then

(2) ch M*Y(A) =ch M(\) for all A e b*, we W.
and
(3) DM™(M\) =~ M™% ()\) for all A € h*, w € W.

Here wy is the longest element in W.

For A € h* we set W(A\) = {w € W |w(\) € A+ ZR} . This is the Weyl group
corresponding to the root system R(A) = {a € R | (A, ") € Z}. We denote by O,
the block in O consisting of all modules whose composition factors have highest
weights in W(A) - A. Then O decomposes into a direct sum of these blocks. When
A, i1 € b* lie in the closure of the same Weyl chamber and A — p is integral then we
have a translation functor T)‘\” : Oy — O,,. We shall in particular make use of these
in the case where A belongs to the interior (i.e., A is regular) and u to exactly one
wall of a Weyl chamber. If s € W(\) is the reflection corresponding to this wall we
denote by 6, the "wall-crossing functor” le‘ oTY.

Assume that A € h* is a regular weight. Then the twisted Verma modules have
the following propertics with respect to translation:
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If 1 € A+ ZR belongs to the closure of the W (\)-chamber containing A then
(4) T{MY(X) >~ MY (p) for all w e W(A).

Let w € W(A) and let s be a simple reflection in W(A) such that ws > w. If
w™l X < sw™!' - X then we have an isomorphism

(5) M™(A) =~ MUS(\).

Let w.r € W(A) with r being a reflection in a wall of the W (\)-chamber
containing \. If w™' - X > w™!r - A. Then we have a short exact sequence

(6) 0 — M™(A\) — 6, M™(\) — M™(r-\) — 0.

It is proved in [AL] that the properties (1)-(6) characterize twisted Verma
modules. In fact, the conditions in Theorem 5.1 in [AL] are much weaker (for
instance (3) follows from the other conditions, see Corollary 5.1 in [AL]. Indeed,
this was the only way we could prove (3)).

3. The quantum case

Set k& = Q(¢q) with ¢ an indeterminate and let U, = U,(g) be the quantized
enveloping algebra of g. As usual (see e.g. [Ja]) we denote the generators of this
k-algebra by F;, F;, K; and K; ', i=1,--- ,n, and we let USt. U, and U] denote
the subalgebras generated by the E;’s, the F;’s, and the Kiil’s, respectively. Then
Uy =U; U}I’U{f. We set B, = U(?U;.

Let A € (k*)™. The Verma module for U, with highest weight A is defined just
as in the classical case

M,(\) =U, @B, kx.
Here £y is the 1-dimensional Bg-module on which K; acts as multiplication by A,
and F; acts as 0.

3.1. We shall now see how we can imitate the construction of twisted Verma
modules mentioned in Section 2.

On U, we have a natural ZR- (respectively Z-) grading in which E; has degree
«; (respectively 1). F; has degree —a; (respectively —1) and KI"—L1 has degree 0. For
A € ZR (respectively m € Z) we denote the subspace in U, consisting of elements
of degree A (respectively m) by (Ug)a (respectively (Ug)m). If N is a Z-graded
subalgebra of U, we define N~ to be the graded dual of N, i.e.

N* = @ Homyg(N_,,. k).
meZl
This is a left and right N-module via (nf)(x) = f(xn), respectively (fn)(z) =
fnx), n,x e N, fe N*.

For each i = 1,---,n we have a braid group operator R; on U, (we prefer
the letter R instead of the more commonly used T for these operators because our
twisting functors are denoted by T'). We have R;((U,)x) = (Uy)s,» for all XA € ZR.

Let w € W and pick a reduced expression w = s;, ---s;, for w. Set (3; =
i85, (). Then {B1,--- 3.} = {8 € Rt | w(B) < 0}. We set

Fg, =R - Ri, [(F;)) € (Ug)-p,

and define U, (w) to be the subspace of U, spanned by the monomials

(1) Far - F gl a; €N
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It is a fact [Ja, 8.24] that U, (w) is a subalgebra of U~ with basis consisting of the
set of monomials in (1). This subalgebra depends only on w (not on the reduced
expression we have picked). Moreover, if we set w’ = s; w then (see e.g. [DP], 9.3)

: —(8;,8- _ S~
(2) q %P Fy Fy — Fy Fs € Uy (w')

forall j =1,---.,r—1. Here ( , ) is the usual W-invariant symmetric bilinear
pairing on ZR.

Note that (2) allows us to define an action of Fg, (and hence a k[Fj3, ]-module
structure) on U, (w’) by
(3) ady(Fg,)(n) = [Fg,,n]y := ¢*P) Fs n —nFy,
for n € U (w')a.

DEFINITION 3.1. The quantized semiregular module S;’ associated with w is
the left U, and right U, (w)-module

Sy =Uq s (w) U, (w)".
Note that for w = ¢ we have U (¢) = k and 57 = Uj,.

3.2.  We shall now consider the case w = s;, the i'th simple reflection. Here
U, (si) = k[F;]. We shall need the following
LEMMA 3.2. The set S = {F/" | m € N} is an Ore subset of U,,.
Proor. We must check that for every u € Uy and every a € N we have
SunUgGFf # 0 # FFU;NuS.
This follows easily from the following relations
(1) ady(F;)' =" (F;) =0fori#j

(with a;; being the (i, 7)’th entry in the Cartan matrix for R and adq(F;) defined
in 3.1(3) above),

(2) [Fi. E;] =0 for i # j.
and
(3) E('")F‘(S) _ Z F-(_g¥j) |:I\'i'- 2)—r— 6} E(,-__,',
1 1 >O 1 j 1
i>

(with notation as in [Lu]).
Note that (1) and (2) are among the defining relations for U, and (3) (sometimes

called Kac's formula) is a "higher version” of the defining relation [E;, F;] = [K 1;“ ] .

Let now Uyp,) denote the Ore localization of U, at the set {l,Fi,Ff.n- }
This is clearly both a left and a right U,-module. So is the quotient U, g,)/U, and
we have

PROPOSITION 3.3. There exists an isomorphism of left U,-modules and right
k [F;]-modules 8¢ &= UgtryfUys
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PROOF. Let us drop the index 4 from the notation. Write f,,, € k [F]" for the
map given by FV — 4;, for j € N. Then we define a k-linear map U,r) — S; by
w/F" = uF @ fm, uweU; meN.

Since Ff,, = fm_1 for m > 0 and F fy = 0 this is a well defined map with kernel
equal to Uy. It clearly induces the desired isomorphism. O

3.3. Returning to the case of a general w € W we resume the notation above.
Lemma 3.2 implies that the sets {1. Fg,, F'}, e } .j=1.---,r are Ore subsets of

Uy We let Uyp, y denote the corresponding Ore localization of U, and set
J
Sq(Fs,) = Ugry ) /Us-
We shall now prove a quantum analogue of Lemma 3.2.6 in [Ar]:

PROPOSITION 3.4. Let w € W have reduced expression w = s; ---s;, and
define 31.32,--- .3, € RT as in 3.1. Then there exists an isomorphism of left
Uq-modules and right U, (w)-modules

8 ~ 8,(Fp,) ®u, -+ ®u, Sq(Fp,)-

PRrOOF. We proceed by induction on r. For » = 1 the statement is Proposition
3.3. So assume r > 1 and set w’ = s; w. Writing F short for Fj3_we define a (right)
k[F]-module structure on U, (w) @, .y Uy (w')* by
q

q q
(1) n® fYF=¢*)(nF® f+n®][F, fl,)
for n € Uy (w), f e (U; (w')* ) . Here [F\ f], is the linear map on U, (w’) given
by x — f ([F,x],). Note that (by (2 in 3.1) above) we have [F, z], € U, (w') for all
re Uy (w).
To check that (1) is a well defined action we need to verify
(2) (ne@ fAF=(n®xf)F for all x € Uq_(ll‘l);,-
We first compute the left hand side (using 3.1 (3))
(nz @ f)F = ¢*P)(nzF @ f + nx @ [F, f]y) =
g (n(q ) Fa — [Fo2lg) ® f + na ® [F, flg) =
q(/\+uﬁ, nF@af —q™ Brln @ (F, @) f + q(Aﬁ,-)” ® z[F, f],-

On the other hand the right hand side of (2) equals (noting that z f € (Uq_ (“’I)*),\ﬂ,)

g ) (nF @xf+n® [F,zfl,)
Hence (2) comes from the following equality valid for all y € U, (w")
—y[F, z]q + [F, yz]q = ¢*P)[F, gz

We claim now that (1) leads to an isomorphlsm of left Uq‘(w)—modulos

(3) Uq (w)* (U;(w) ‘JU (w') U (w) )®k[F] k[F]*'

To prove this claim we first observe that (because of 3.1(1) ) we may write
elements of U (w)* as linear combinations of f - g with f € Uy (w')*, g € k[F]".
Here f - g is the linear map on U, (w) given by

(f-9)(F'n) = f(n)g(F*), aeN, ne U, (w').
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Therefore the action of U, (w) on f-g is determined by the following two formulas

(4) x(f-g)=(xf)-g. xe U, (w),
and
(5) F(f-9)=q¢ M"(f - Fg)—[F.flg-9, f € Uy (w))a

In fact, (4) is obvious and (5) follows from the computations (where a € N, n €

U; (u'),0)
F(f-g)(F'n) = f-g(FnF) = f-g(F'q"“’) Fn— F*[F.n],)
= ¢ f(n)g(Fe™Y) — f([F,n]q)g(F*).
Define now ¢ : Uy (w)* — (U (w) ®y- () Uy (W0')") @xir) E[F]* by

o(f-9)=110f®g.
Then (1), (4) and (5) imply that ¢ is a U, (w)-homomorphism. It is therefore also
an isomorphism and we have proved (3).
Using (3) we finally get

Sy =Uq Oy, (w) U, (w) ~U, By (w) (U, (w) By (w) U, (")) Qe K[F]”
(ll")* @1/{[ Uq ®k[F] k[F]* 24 S;V/ Ru, S;"‘.

~U. & -~
= Uy @y ) Ug

The induction hypothesis now finishes the proof. O

3.4. The previous proposition shows that Si has a right U;-module structure.
A priori this stucture might depend on the reduced expression for w. However, we
now prove

PROPOSITION 3.5. There exists an isomorphism of right U,-modules
w o U () & 7
S¢ & Uy (0)" @y Us

q

with Sy equipped with the right Us-module structure provided by Proposition 3.4.

ProOF. This is proved using arguments similar to the ones above so we shall
just sketch the line of arguments. Set w” = ws;, and write F’ short for F; . With
Ny(w"”) = R;, (U, (w")) we then have (see [DP])

(1) [F'.yly = F'y — ¢*P1)yF' € Ny(w")

for all y € Ny(w")x. Hence the following formula gives Ny (w")* @, () Uy (w) a
left k[F’]-module structure

(2) F'(fon)=¢*P)(fe F'n—[F, fl; ®n),

f e (Ny(w”)*)x and n € U, (w). This in turn leads to an isomorphism of right

U, (w)-modules

(3) Uy ()" = k[F']" @kp) (No(w")" @, () Uy (W),

and hence to an isomorphism of right U;-modules
(4) Uy (w)" @y () Ug = K[F']" Qi) (Ng(w")" R, () Ug)-

By induction on r (using Proposition 3.2 for the start) we see that the right hand
side of (4) may be identified with Sq(F') ®u, Ri, (S¥") ~ Sy(Fj,) ®@u, Sq(Fs,) @u,
- @u, Sq(F3,). Conclusion by Proposition 3.4. O

q
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3.5. Having verified that 5§ has a natural U,-bimodule structure we are ready
to define the twisting functor associated to w on the category of (left) U,-modules.
Let us denote by R, the automorphism of U, given by R,, = R;, --- R;, and if V
is a Uj,-module we write R, (V) for the U;-module whose underlying k-space is V'
but with Ug-action given by u-v = Ry (u)v. ue U, v e V.

DEFINITION 3.6. Let M be a Uj;-module. Then the twisting functor 7). is
defined by

TwM = R, (Sy @u, M).

The twisted Verma module corresponding to A € (k™)™ is

ME(A) = TuMy(w™" - \).

Note that T, is the identity functor. Hence we have immediately

(1) My (X) = My(X) for all X e ()",
If we extend the reduced expression w = s;, ---s;, to a reduced expression
for wo, wo = siy -+ 55,54, -5, and likewise extend the definition of 3; to the

full range j = 1,--- , N then it follows from (1) in Section 3.1 (with the order
reversed, see [Ja]) that Ug (wo) = U, is free as a left U, (w)-module with basis

(
Fler .. F”N
Bri1 BN
isomorphisms of U((l)—modules (using Proposition 3.5)
w
Sq ®u, My(
= (w)* &
lambda) ~ U, (w) S (uw

- * woo, 2 e ~o TT—(an)* Tw « ¥
LT(] (“') Sk L/q Dk Bq S)Bq ]‘)\ == [/q (“) Sk L/z;‘ Dk l‘)w

a; €N } . Denote by U’ the k-span of this basis. Then we have

yUg @u, Uy ®B, kx =~

This allows us to determine the character of M *()). We get
(2) chM"(A) = chM,(A).

It follows from (2) that T, preserves the BGG-category O,. Now we can proceed
just as in the classical case from Section 1 to verify the properties analogous to (3)-
(6). (For the analogue of (3) we should point out that we use the duality functor
D on O, given by DM = ©(M,)* with Ug-action (u- f)(m) = f(S(w(u)m). uel,.
m € M. f € DM. Here w is the automorphism of U, from [Ja, 4.6] and S is the
antipode on Uy).

REMARK 3.7. In the classical case we proved in [AL] that the properties (1)
- (6) in Section 1 characterize twisted Verma modules (more precisely we proved
that the weaker conditions in 5.1 of [AL] do). The same is true in our quantum
casc. One of the subtle points in the proof of this is to see that the endomorphism
ring of M;"(A) is just k. The easiest way to check the quantum version of this is via
specialization to the classical case, see Proposition 4.3 below.

4. Deformations and filtrations

We saw in [AL] that the construction of Verma modules by means of the
twisting functors Ty, is well suited for extensions of the ground ring C. In particular,
we used this to define Jantzen type filtrations of twisted Verma modules and we
derived the corresponding sum formulas. In this section we shall see that a similar
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procedure works in the quantum case. Most of the proofs are completely analogous
to the ones presented in [AL] and we omit the details.

4.1. Let X be an indeterminate and set k = k(X). The quantum group U,,(l;)
over k is defined exactly as U,: i.e. using the same generators and relations but
replacing & by k. Alternatively. U,,(l;‘) =U,; ®i k. We may also for each A € (k*)"
define a Verma module M, ()); and twisted Verma modules M (M), w € W with
highest weight A just like we did for U, in Section 2.

Consider the local ring A = k[X](x_1) C k. and let A* denote the units in A.
We have then the quantum group Uy (A) over A with Verma modules Mg ()4 and
twisted Verma modules M ’(A)a for all A € (A*)" and w € W. These modules are
A-forms of the corresponding modules for Uq(lz'). Moreover, when we consider k as
an A-algebra via the specialization X — 1 then we have

M (M) a®ak>=MS(A)
where A € (k*)" is the specialization of \.

4.2.  We shall first look at the case where the underlying Lie algebra is sly. In
this case we denote the generators (for U, as well as U,(k)) by E, F, K and K.
For each A € k* we have just two twisted Verma modules, namely

ME(A)g = My(N)z and M (A); =~ DM,(\);.

where s denotes the non-trivial element in W.
The universal property of Verma modules gives us a natural homomorphism

(bA < ]\[q()\)]'f — D]\fq()\)]:

Let vg € My(A); be a highest weight vector and set v; = F®y, (using the standard
divided power notation F() = ﬁ as in [Ja]). Then {v;} is the usual basis for
M,(N);. An easy computation shows that in terms of the corresponding dual basis
{v;} in DM (X); we have

(1) ox(vi) = a;v], 1 €N,

o , 2 g s
where a; = (~1)'g" VA~ [)], [}] = [] 222257 Note that if A = ¢” for
j=1

some 1 € Z then [ﬂ = [7] in the notation from [Ja].

It follows from (1) that ¢, is an isomorphism if and only if A ¢ {£q" | r € N}.
On the other hand. if A = +q" for some r € N then we see that Ker(¢p,) =~
M, (£q7""?); and Coker(gy) =~ DM,(£q " %); =~ My(£q ""?);. In other words,

we have a 4-term exact sequence
0 — My(£q™ %) = My(xq");, — M;(£q"); — Mg(£q™""?); — 0
Suppose A € A*. Then the formula (1) shows that the homomorphism ¢
M,(A)a — Mg(N)a is an isomorphism if and only if a; € A* for all i, ie. if
and only if [”\] is not divisible by X — 1 for all .
Consider the special case where A = +¢" X for some r € Z. If r < 0 then the

above remarks show that ¢, is an isomorphism. However, if » > 0 then X — 1
divides [’I\] for all i > r. This leads to the exact sequence

0— My(£q"X)a — M (£q"X)a — My(£q™"?) = 0.
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Here the first map is ¢+~ x whose cokernel M (+q™ " 72X ) 4 /(X —=1)M,(£q 72X )4
we have identified with M (£q~""2).

Analogous arguments lead to a homomorphism ¢y : DMg(A); — My(A); with
similar properties.

4.3. Let us now return to the case of a general g. Here we will consider a
fixed weight A € Z™" corresponding to the character U[S’ — k which takes K; into
qd,/\,
be +1. It is standard how to generalize from this to the characters K; — =+¢q
Then we shall study the character ¢*X of U} (and of U((l)]:_) given by K; — ¢4 X.

. We thus restrict ourselves to integral weights and we have chosen all signs to
d, \;

Fix also w € W and a reduced expression w = s;, ---s;,. Extend to a reduced
expression s;, --- ;. 8, -+ 85 for wy and set (as in [AL] but not quite as in
Section 3.1)

1

—ws;, -8 (o), i j<r
Bi = S

wsiy 8 (), if j > r.
Then {#1,--- ,Bn} =Rt and {B1,--- .3, } = {B e Rt |w1(B) < 0} = Rt (w).
For each i = 1,--- N we have a minimal parabolic subalgebra U, (i) of U,,

namely the one generated by B, together with F;. Then the corresponding Verma
module for U, (i) is M, ;(A) = Uy(i)®p, kx and the twisted Verma module Af;.’i()‘) =
Ri(Uy(i) @1 p) KIE] ©u, ) Mg.i(si- A)). There are also analogues of these modules
over A and k relative to the character g X.

The sly-theory in Section 4.2 leads to natural Uy (i)-homomorphisms

Ot Myi(@*X)a — M2(q*X)a

q.t
and
Uai: J\[;_‘i(q)‘X),; — A[,,_,'(q)‘X)A
with properties similar to the homomorphisms ¢, and ¥’y in 4.2.

Exploring the fact that T, = Tl,.s,l o TS'; (see Proposition 3.4) together with
the relations between twisted Verma modules for U,(iy) and for U, (see Section
6.6 in [AL]) we obtain (as in loc. cit. Section 7) a sequence of natural U,(A)-
homomorphisms

ws

MIP(PX)a — My " (@* X )4 — - —= ME(¢*X ) a

Each homomorphism in this sequence is induced by some ¢, ; or ¥, ;. We denote
the composite by ¢ (A) and define

MY (XY, = {me My (@*X)a | 6" (N)(m) € (X — 1) M¥"(¢*X)a}.

Taking the image of this filtration under the specialization map AI;’(Q)‘X)A —
M2(q*) (induced by X ~— 1) produces a filtration (M*(¢*)7);>0 of M (q*).
In analogy with 7.1 in [AL] we get

PROPOSITION 4.1. Let A, w be as above. Then ]\J]I*’(q’\) has a Jantzen filtration
M) = M2 (@) 5 M) 550
such that ]\[(';”((1)‘)/]\1(}”((1)‘)] s 1.somorphic to the image of the composite ]\[(;“(q*) —

ws,,

My " (¢*) — -+ — MY (¢*) and
D chME (MY = Y (chMy(qh) = chMy(¢ )+ Y chM, (g™,

Jz1 BERT (w) BERT\RT(w)
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REMARK 4.2. i) This proposition generalizes the Jantzen sum formula
for ordinary quantized Verma modules (cf. 4.4.17 in [Jo]).

ii) Note that (just as in the classical case) we sometimes have ]\1(';”((1)‘)1 =
Z\[,;“(q’\). This is connected with the fact that twisted Verma modules do
not in general have simple socles and heads. An illustration of this is
the Bs-case treated in 7.4 of [AL], where we used the sum formula to
compute all filtration layers (the very same computations apply in the
quantum case). Further examples and results on the structure of twisted
Verma modules can be found in [St] (in the classical case). Their socles
and heads are not known in general.

4.4. Finally, let us point out that quantized twisted Verma modules are de-
formations of their classical counter parts. Set namely, A" = Clg],—1) C k and let
U be the A’-subalgebra of U, generated by E\”. F\") K, and K, ', i=1,--- .n.
r € N. Then we have (for A € Z™ as before) A’-forms M, (A) of the twisted Verma
modules M "(A). To construct these we proceed as in Section 3 except that we work
consistently with divided powers instead of ordinary powers. For instance UY, is

the A’-subalgebra of U4, spanned by the set {Fé(:) e F/gi”) | a; € N} ,cf. (1) in
Section 3.1.
The twisted Verma modules for Ujy: are free over A’ and satisfy
MY (N) @4k~ ]\[(';“(q’\) and MY (A) @4 C >~ MY (N).

Here C is considered as A’-algebra via the specialization g — 1.
As an application of this observation we record

PROPOSITION 4.3. For all A € Z"™ and w € W we have Endyq(l\fl;”(q)‘)) ~ k.

ProOF. Clearly, Endy,, (M}, (A)) ®a C € Endyg)(M™(X)). However, the lat-
ter ring is just C by Corollary 6.3 in [AL]. Hence also

Endpq(]\[(;”(q’\)) ~ Endy,, (MY/(X) ®a k

is 1-dimensional. O
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On tameness of the Hecke algebras of type B

Susumu Ariki

ABSTRACT. We conjecture that Hecke algebras have a block of tame represen-
tation type only if ¢ = —1 and prove that a Hecke algebra of type B has tame
representation type if and only if ¢ = —1 and n = 2. As a related topic, we
also develop theory of the Green correspondence for Hecke algebras of general
type.

1. Introduction

Based on [AM1] and [AMZ2] we have determined when a Hecke algebra of clas-
sical type has finite representation type [A4]. Let F be an algebraically closed field
of characteristic ¢ and assume that ¢ € F* is a primitive e'? root of unity. Let W
be a finite Weyl group of classical type, Hy (q) the associated Hecke algebra, which
is defined over F. If ¢ = 1 then Hy (q) = FW has tame representation type if and
only if 2 does not divide |W|. Now assume that e > 2. Let Py (1) = Y owew zhw)
be the Poincare polynomial of W. Then Hy (¢) has finite representation type if
and only if (z — ¢)? does not divide Py (). This is a natural ¢-analogue of the old
result of Higman [H] applied to Weyl groups. See [A4] for the details.

Let F[X] be a polynomial ring. A finite dimensional F-algebra A is said to
have tame representation type, if for each positive integer d there are finitely many
(A, F[X]) bimodules M. ..., M,, which are free as right F[X] modules such that
all but finite number of d-dimensional indecomposable A modules M are of the
form M ~ M; ®@p;x) F[X]/(X = X), for 1 <i <ng and A € F. As is well-known,
an Artinian algebra of infinite representation type has either tame representation
type or wild representation type. This is a famous theorem of Drozd. See [Dr], [C]
or [E. 1.4.6].

As we have given a criterion for finite representation type, our next step is to
determine when Hy (¢) has tame representation type. In order to have an insight,
let us recall the group algebra case again. In [BD], the authors proved that a group
algebra has tame representation type if and only if the base field has characteristic 2
and the Sylow 2-subgroup is one of dihedral, semidihedral or generalized quaternion
groups. On the other hand, the g-analogue philosophy suggests that if ¢ # 1 then
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