Computer Scieoce | 1618}

Jean Bézivin Pierre-Alain Muller (Eds.)

The Unified
Modeling LLanguage

«UML»’98: Beyond the Notation

First International Workshop
Mulhouse, France, June 1998
Selected Papers

&) Springer

Jean Bézivin Pierre-Alain Muller (Eds.)

The Unified
Modeling Language

«UML»’98: Beyond the Notation

First International Workshop
Mulhouse, France, June 3-4, 1998
Selected Papers

PIZEN
&) Springer

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Jean Bézivin

Université de Nantes, Faculté des Sciences et Techniques

2, Rue de 1a Houssiniere, B.P. 92208, F-44322 Nantes Cedex 3, France
E-mail: jean.bezivin@sciences.univ-nantes.fr

Pierre-Alain Muller

ObjeXion Software

5, Rue Gutenberg, F-68800 Vieux-Thann, France
E-mail: pa.muller @essaim.univ-mulhouse.fr

Cataloging-in-Publication data applied for
Die Deutsche Bibliothek - CIP-Einheitsaufnahme

The unified modeling language : first international workshop ; selected papers /
UML '98: Beyond the Notation, Mulhouse, France, June 3 - 4, 1998, Jean Bézivin
; Pierre-Alain Muller (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ;

Hong Kong ; London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 1999
(Lecture notes in computer science ; Vol. 1618)
ISBN 3-540-66252-9

CR Subject Classification (1998): D.2, D.3

ISSN 0302-9743
ISBN 3-540-66252-9 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is

concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are

liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1999
Printed in Germany

Typesetting: Camera-ready by author
SPIN: 10705238 06/3142-543210 Printed on acid-free paper

Table of Contents

UML: The Birth and Rise of a Standard Modeling NOtationceuveeesvsseirnsnssseseessscssnisansens 1
J. Bézivin, P.-A. Muller

Developing with UML - Some Pitfalls and Workaroundsocormmerscrierinereacinrnincnssseseenses 9
M. Hitz, G. Kappel

Supporting and Applying the UML Conceptual Framework........c.couvvsenvircriinveessmsesnsacrines 21
C. Atkinson

Modeling: Is it Turning Informal into FOrmal?.......cc.cccccemiievnrninneeine st secereceaeeeenes 37
B. Morand

Best of Both Worlds — A Mapping from EXPRESS-G to UML......cooviivcrmncrrnrerceeeeeciene 49

F. Arnold, G. Podehl

Porting ROSES to UML - An Experience RepOrtc.ccvremiiiniirreeteeresireeeeseeensescseens 64
A. Olivé, M.-R. Sancho

Making UML Models Interoperable with UXF ..ot resssenscsnnne 78
J. Suzuki, Y. Yamamoto

Transformation Rules for UML Class DiaSramsccccccvrrerrereereriresrcsaisrmsssassesssonsiesssssessesss 92
M. Gogolla, M. Richters

Semantics and Transformations for UML MOdEIS.....c.ceeceecserrrmroresrererecsrecsrsesssesssesseecans 107
K. Lano, J. Bicarregui

Automation of Design Pattern: Concepts, Tools and Practices.........c.cvceirreeceeireenencscenns 120
P. Desfray

Automating the Synthesis of UML StateChart Diagrams from Multiple

Collaboration DIABIAINSc.ciriirecrerirniiii et cnatees et e st st sessssesaens e sessmomssmnasen 132

L Khriss, M. Elkoutbi, R. K. Keller

Informal Formality? The Object Constraint Language and Its Application in the
UML Metamodel........covvvurirusiiiniiisrcnsnsicssininiiiisesssssssioesimsssssssaninecsssronscssass 148
A. Kleppe, J. Warmer, §. Cook

Reflections on the Object Constraint Language........cccvveeevermrierernienieesersreecnresnenneesenenee 162
A. Hamie, F. Civello, J. Howse, S. Kent, R. Mitchell

Vil

On Using UML Class Dlagrams for Object-Onented Database Des1gn Specxﬁcatlon

of Integrity Constraints .. U PO PTOTOTTOTURTUSSRURURURD W i |
Y Ou
Literate Modelling - Capturing Business Knowledge with the UML............ccoeoovomvnnnocen. 189

J. Ariow, W. Emmerich, J. Quinn

Applying UML to Design an Inter-domain Service Management Application 200
M. Mancona Kandé, S. Mazaher, O. Prajat, L. Sacks, M. Wittig

BOOSTER*Process: A Software Development Process Model Integrating Business
Object Technology and UMLceveveeeisiemerineniecereemeeee et eeeneneesese e eese e senasnns 215
A. Korthaus, S. Kuhlins

Hierarchical Context Diagram with UML: An Experience Report on Satellite
Ground SyStem ANALYSIS.......ccoceueviiiieecririnerenrsisss s e rseeseesesnsssee e sessssssans 227
E. Bourdeau, P. Lugagne, P. Roques

Extension of UML Sequence Diagrams for Real-Time SyStems............coceevvveereerrresonsenne 240
J. Seeman, J. Wolff v. Gudenberg

UML and User Interface MOAEHNg........coovurmeuriiinentimeeciaeeecesiseece e esseeseseseses s eeesveses 253
S. Kovacevic

On the Role of Activity Diagrams in UML - A User Task Centered Development

Process fOr UML ...ttt sse s ses st s ssessememssas s e oo s s enssnens 267
B. Paech

Structuring UML Design DeliVErables.............cc.vocueeueeeeecereieieceevsseesscssssneesseesessessassessens 278
P. Hruby

Considerations of and Suggestions for a UML-Specific Process Model294

K Kivisto

An Action Language for UML: Proposal for a Precise Execution Semantics 2o 307
S.J. Mellor, S.R.Tockey, R. Arthaud, P. Leblanc

Real-Time Modeling with UML: The ACCORD Approach.........ccoeveeeirineeeuieenrerenenan. 319
A. Lanusse, S. Gérard, F. Terrier

The UML as a Formal Modeling NOAtON.c.covrerrrrmriiemiesesraseresseserestssseresesssesssessssens 336
A. Evans, R. France, K. Lano, B. Rumpe

OML: Proposals to Enhance UML.........c.ccocotereererrneenrreneneecesenecens e s 349
B. Henderson-Sellers

IX

Validating Distributed Software Modeled with the Unified Modeling Language 365
J.-M. Jézéquel, A. Le Guennec, F. Pennaneac'h

Supporting Disciplined Reuse and Evolution of UML Modelscceceoeemrerrerrverenvenerncecens 378
T. Mens, C. Lucas, P. Steyaer:

Applying UML Extensions to Facilitate Software Reusecccocoevcvceccennnnens 393
N.G. Lester, F.G. Wilkie, D.W. Bustard

A Formal Approach to Use Cases and Their Relationships........... st e bbb enns 406
G. Overgaard, K. Palmkvist

A Practical Framework for Applying UML............covireemirrvennininiiosssesssesessessorsonssres 419
P. Allen

Extending Aggregation Constructs it UMLcc.ccveivvinecermmnrienennnenesnsreeecreessesssnsenne 434

M. Saksena, M.M. Larrondo-Petrie, R.B. France, M.P.Evett

ATIOT INACX ..ottt ee s snesesve e s sssressssaeasasnesssseosspanessntassessentssssasnneeernans 443

UML: The Birth and Rise of a Standard
Modeling Notation

Jean Bézivin', Pierre-Alain Muller?

! Laboratoire de Recherche en Sciences de Gestion
Université de Nantes
Faculté des Sciences et Techniques
2, rue de la Houssiniére
BP92208
44322 Nantes cedex 3
France
Jean.Bezivinfsciences. uniy-nantes. fr

2ESSAIM
Université de Haute-Alsace
12, rue des fréres Lumiére
68093 Mulhouse
France
pa.muller@essaim.univ-mulhouse.fr

Abstract. Officially the Unified Modeling Language UML is a graphical lan-
guage for visualizing, specifying, constructing and documenting the artifacts of
a software-intensive system. For many, UML is much more than that and sym-
bolizes the transition from code-oriented to model-oriented software production
techniques. It is very likely that, in a historical perspective, UML will be given
credit for the perspectives opened as well as for the direct achievements real-
ized. This introductory paper presents some of the characteristics of the nota-
tion and discusses some of the perspectives that have been and that are being
opened by the UML proposal.

Introduction

The first few years of the 90s saw the blossoming of around fifty different object-
oriented methods. This proliferation is a sign of the great vitality of object-oriented
technology, but it is also the fruit of a multitude of interpretation of exactly what an
object is. The drawback of this abundance of methodologies is that it encourages con-
fusion, leading users to adopt a 'wait and see' attitude that limits the progress made by
methods.

In 1996, the Object Management Group (OMG) put together a task force chartered
with defining and approving a notational and meta-model standard for object-oriented
analysis and design. The task force was made up of vendors of related tools that ini-
tially clustered themselves into four major camps. One of these camps aggregated
around the submission originated by Rational Software and promoted the Unified
Modeling Language (UML) that Rational built from the OMT, Booch and OOSE
methodologies created by the three methodologists (Rumbaugh, Booch, and Jacobson)
in its employ. The four proposals were submitted to OMG in January 1997. Other
camps noted the absence of support for software development process, business proc-
ess modeling, and real-time extensions within de UML definition. In March 97, the
factions agreed to work closely together to add the capabilities needed for the UML to
satisfy their various needs, and in December 1997, the standard was formally adopted.

From the Unified Method to the Unified Modeling Language

The unification of object-oriented modeling methods became possible as experi-
ence allowed the evaluation of the various concepts proposed by existing methods.
Based on the fact that differences between the various methods were becoming
smaller, and that the method war did not move object-oriented technology forward any
longer, Jim Rumbaugh and Grady Booch decided at the end of 1994 to unify their
work within a single method: the Unified Method. About one year later, they were
joined by Ivar Jacobson, the father of use cases, a very efficient technique for the
determination of the requirements.

Booch, Rumbaugh and Jacobson adopted four goals:

® To represent complete systems (instead of only the software portion) using ob-
ject-oriented concepts
To establish an explicit coupling between concepts and executable code
To take into account the scaling factors that are inherent to complex and critical
systems

o To create a modeling language usable by both humans and machines

The authors of the Unified Method rapidly reached a consensus with respect to
fundamental object-oriented concepts. However, convergence on the notation ele-
ments was more difficult to obtain, and the graphical representation used for the vari-
ous model elements went through several modifications.

The first version of the description of the Unified Method was presented in October
1995 in a document titled Unified Method V0.8. This document was widely distrib-
uted, and the authors received more than a thousand detailed comments from the user
community. These comments were taken into account in version 0.9, released in June
1996. However, it was version 0.91, released in October 1996, which represented a
substantial evolution of the Unified Method. The main effort was a change in the di-

rection of the unification effort, so that the first objective was the definition of a uni-
versal language for object-oriented modeling, and the standardization of the object-
oriented development process would follow later. The Unified Method was trans-
formed into UML (the Unified Modeling Language for object-oriented development).
As we are approaching today the version 1.4 of UML [7], the OMG Revision Task
Force is already thinking to a future version 2.0. At the same time the notation is now
well documented, with a rapidly increasing number of textbooks (e.g. [11, [3], [4], [5],
etc.)

Model and Meta-model

The initial effort focused on the identification and definition of the semantics of
fundamental concepts - the building blocks of object-oriented modeling. These con-
cepts are the artifacts of the development process, and must be exchanged between the
different parties involved in a project. To implement these exchanges, it was first
necessary to agree on the relative importance of each concept, to study the conse-
quences of these choices, and to select a graphical representation, of which the syntax
must be simple, intuitive, and expressive.

To facilitate this definition work, and to help formalize UML, all the different con-
cepts have themselves been modeled using a subset of UML. This recursive definition,
called meta-modeling, has the double advantage of allowing the classification of con-
cepts by abstraction level, by complexity and by application domain, while also guar-
anteeing a notation with an expressive power such that it can be used to represent
itself.

A meta-model describes formally the model elements, and the syntax and semantics
of the notation that allow their manipulation. The raise in abstraction introduced by
the construction of a meta-model facilitates the discovery of potential inconsistencies,
and promotes generalization. The UML meta-model is used as a reference guide for
building tools, and for sharing models between different tools.

A model is an abstract description of a system or a process - a simplified represen-
tation that promotes understanding and enables simulation. The term 'modeling' is
often used as a synonym of analysis, that is, the decomposition into simple elements
that are easier to understand. In computer science, modeling usually starts with the
description of a problem, and then describes the solution to the problem. These activi-
ties are called respectively 'analysis' and 'design’.

The form of the model depends on the meta-model. Functional modeling decom-
poses tasks into functions that are simpler to implement. Object-oriented modeling
decomposes systems into collaborating objects. Each meta-model defines model ele-
ments, and rules for the composition of these model elements.

The content of the model depends on the problem. A modeling language like UML
is sufficiently general to be used in all software-engineering domains and beyond - it
could be applied to business engineering, for example.

A model is the basic unit of development; it is highly self-consistent and loosely
coupled with other models by navigation links. Dependent on the development proc-
ess in use, a model may relate to a specific phase or activity of the software lifecycle.
A model by itself is usually not visible by users. It capture the underlying semantics of
a problem, and contain data accessed by the tools to facilitate information exchange,
code generation, navigation, etc. Models are browsed and manipulated by users by
means of graphical representations, which are projections of the elements contained in
one or more models. Many different perspectives can be constructed for a base model
- each can show all or part of the model, and each has one or more corresponding
diagrams.

The UML diagrams
UML defines nine different types of diagram:

Class diagrams
Sequence diagrams
Collaboration diagrams
Object diagrams
Statechart diagrams
Activity diagrams

Use case diagrams
Components diagrams
Deployment diagrams

Different notations can be used to represent the same model. The Booch, OMT,
and OOSE notations use different graphical syntax, but they all represent the same
object-oriented concepts. These different graphical notations are just views of the
same model elements, so that it is quite possible to use different notations without
loosing the semantic content.

At heart, then, UML is simply another graphical representation of a common se-
mantic model. However, by combining the most useful elements of the object-oriented
methods, and extending the notation to cover new aspects of system development,
UML provides a comprehensive notation for the full lifecycle of object-oriented de-
velopment.

The UML notation is a fusion of Booch, OMT, OOSE and others. UML is de-
signed to be readable on a large variety of media, such as whiteboards, paper, restau-
rant tablecloths, computer displays, black and white printouts, etc. The designers of

the notation have sought simplicity above all — UML is straightforward, homogene-
ous, and consistent. Awkward, redundant and superfluous symbols have been elimi-
nated, in order to favor a better visual rendering.

UML focuses on the description of software development artifacts, rather than on
the formalization of the development process itself, and it can therefore be used to
describe software entities obtained through the application of various development
processes. UML is not a rigid notation: it is generic, extensible, and can be tailored to
the needs of the user. UML does not look for over-specification — there is not a
graphical representation for all possible concepts. In the case of particular require-
ments, details may be added using extension mechanisms and textual comments. Great
freedom remains for tools to filter the information displayed. The use of colors,
drawings, and particular visual attributes is left up to the user.

Achievements and perspectives

It is now clear that UML is being adopted, with benefits, by a variety of users. We
have mainly presented above, the short term achievements of UML, in a rather con-
ventional way. Before concluding this introductory presentation, let us take a more
high level view of the potential long term contribution of UML.

The OMG has grown to be an adaptable organization with an ability to detect very
rapidly the evolution of industrial trends in technology deployment. At a time when
many were still discovering the virtues of object orientation, OMG was already
working on one of the first detected bottleneck of this technology: lack of
interoperability. The answer to this has been the CORBA software bus. It is not by
pure chance that the work on UML started there, it was because a real and urgent need
to define modeling standards in the domain of object-oriented analysis and design
emerged. However the consequences of this move are generally underestimated. What
really happened then, was not only the definition of another specific new standard
OMG recommendation, but also the starting point for a whole set of new activities.
Previous activities were centered around the software transfer bus CORBA with its
associated IDL language, IIOP protocol and OMA architecture. In the post-UML
period, a new modeling culture is emerging, with a new knowledge bus incorporating
UML, MOF, the OCL language (8] and the XMI transfer format [6]. The two buses
and the two OMG activities are obviously linked, but the modeling camp is rapidly
becoming important. It is now recognized that there are two ways to consider object
interoperability, one is executable code interoperability and the second one model
interoperability.

UML is now a conceptual tool, but it has also served as an experimentation field.
As previously mentioned, the self definition of UML was an interesting exercise and
was successful per se. However, it also demonstrated that the applicability of this
technique could be made broader than just the handling of software artifacts. As a

consequence a new architecture was defined around the MOF (Meta-Object Facility).
This architecture is complex and still evolving, but it could be compared to the OMA
in importance. At the heart there is this self-defined MOF, which is more or less syn-
chronized with the core definitions of UML. The MOF uses UML in various ways, for
example for graphical presentations. But the main differences is that the MOF and
UML are not at the same level in the OMG four-level model architecture. The MOF is
a meta-meta-model and is at the M3 level while UML is a meta-model and stands at
the M2 level. The MOF is a language for defining meta-models and UML is just one
of these meta-models. Other meta-models that are being defined at the M2 level are
for example related to common warehouse, workflow, software process, etc.

So, UML has been instrumental in triggering the development of a new modeling
architecture based on the MOF. Many ideas have been successfully tested on UML
and then transferred to the MOF because they were found to be of broader applicabil-
ity. The first one is the OCL (Object Constraint Language [8]). OCL is an expression
language that enables one to describe constraints on object-oriented models and other
artifacts. The word constraint is used here with the meaning of a precisely identified
restriction on one or more values of a model. We see here a pleasant property of the
global OMG modeling architecture. Since a meta-meta-model is structurally similar to
a meta-model, features applied to one, may also be applied to the other one. So OCL,
that could be applied to meta-models to give more precise semantics to models, could
also be applied to meta-meta-models to give more precise semantics to meta-models.
And this is exactly what happens when OCL is applied at the MOF level.

Another example is the recent answer to the SMIF RFP of the OMG [6]. Initially
the purpose of the Stream-based Model Interchange Format was mainly to exchange
UML models. As it has finally been issued, answered and approved, the proposal is
being known as XMI, a new standard for Metadata Interchange based on XML and on
the MOF. Once again, there is nothing to loose, if by providing a technical solution to
an UML problem, it is possible to provide a more general solution that could be ap-
plied to the UML meta-model, as well as to other meta-models already defined or yet
to be proposed.

Many more examples could be given of this trend. There is for example several
demands to provide structured extension mechanisms for UML, going beyond single
stereotypes, tagged values and constraints. Requests are being submitted for special-
ized UML-based meta-models on subjects like real-time or business objects. A possi-
ble answer to this would be some notion of profiles. In the case where this improve-
ment is allowed to the UML meta-model, there is no reason why other MOF-
compliant meta-models should not also benefit from these added modular modeling
mechanisms. A UML profile may be defined as a subset or a superset of the basic
meta-model. There is however no agreement yet on the way this notion of a profile
could be defined.

Conclusion

It is very tempting to draw a parallel between the historical development of pro-
gramming languages since the early fifties and the more recent development of mod-
eling languages. The important usage of graphical symbols in analysis and design
notations may be made in correspondence with the old time art of flowcharting. Some
of the OA&D notations were more business-oriented and some other were more sci-
entific or real-time oriented, like Cobol and Fortran were also two different answers to
these programming communities. We may also remember that these programming
languages were usually the result of normative, industrial-oriented processes. So,
should UML be considered as the PL/1 of modeling languages? The question is in fact
troubling because the similarities in the definition process are numerous, specially in
the way ingredients have been put together in order to satisfy the maximum of needs.
If we take this resemblance for granted, what will then be the Algol 60, Algol 68,
Pascal, C, C++, Occam or Java of modeling languages? As we know, the history of
programming languages has not always been a linear progression according to scien-
tific or technical criteria. At the beginning of this new period of development of mod-
eling languages, we may hope that some lessons of the past have been learnt, but we
shall not bet on this. Anyway, as we have sometimes heard in the last decade that
"programming is thinking" we will surely hear in the coming years that "modeling is
thinking" (or why not that "thinking is modeling"), and a good notation to write down
its thinking will always be most valuable.

One of the recognized contributions of UML is that it has stopped many sterile
wars of notations on aspects that were not highly significant. No more long discus-
sions on the fifteen ways or so to note cardinalities or to draw classes and instances.
This does not mean that the choices have always been the best possible ones [2], only
that they have been grown from a general consensus and that they will allow a higher
and more productive level of debate.

Another important decision that has been reported above is the separation of the
debate on the notation from the debate on the process. This was a decision that was
not easy to take and that will probably be considered as one of the main contribution
of the authors. Now the work on the notation can progress and the work on the process
can start integrating known research resuits and experience knowledge.

UML is not the first achievement in the modeling world. If we had to quote some of
them we could choose SADT/IDEF0 for the simplicity and JSD for the principle of
coupling the modeling of the system to the modeling of its environment. The next big
challenge that UML will have to face is how to deal with the emerging and multifac-
eted notion of software component. This will be a major test in the coming years and
if successfully passed, it may well become the main qualification title of this modeling
notation.

References

1. Booch, G., Rumbaugh, J., Jacobson, I. The Unified Modeling Language: User guide
Addison Wesley, (November 1998)

2. Bergner, K. et al. A Critical Look at UML1.0. The Unified Modeling Language - Technical
Aspects and Applications, M. Schader and A. Korthaus (eds.), Physica-Verlag (1998)

3. Fowler, M. UML Distilled: Applying the Standard Object Modeling Notation. Addison
Wesley (1997)

4. Harmon, P., Watson, M. Understanding UML - The Developer's Guide with a Web-based
Application in Java. Morgan-Kaufmann (1998)

5. Muller, P.A Instant UML Wrox Press, Chicago, (December 1997)

6. OMG XML MetaData Interchange (XMI) Proposal to the OMG OA&D TF RFP3 : Stream
Based Model Interchange Format (SMIF) Document ad/98-10-05, (October 20, 1998),
Adopted at the Washington Meeting, (January 1999)

7. UML Specification. Version 1.3R9, Rational Software (January 1999)

8. Warmer, J., & Kleppe, A. The Object Constraint Language Precise Modeling with UML
Addison Wesley, (October 1998)

Developing with UML - Some Pitfalls and
Workarounds

Martin Hitz!, Gerti Kappel?

! Department of Data Engineering
Institute of Applied Computer Science and Information Systems
University of Vienna
A-1010 Vienna, Austria
hitz@ifs.univie.ac.at
2 Department of Information Systems
Institute of Applied Computer Science
Johannes Kepler University of Linz
A-4040 Linz, Austria
gerti @ifs.uni-linz.ac.at

Abstract. The object-oriented modeling language UML offers various
notations for all phases of application development. The user is left alone,
however, when applying UML in up-to-date application development involving
distribution, data management, and component-oriented mechanisms,
Moreover, various shortcomings have been encountered, most notably w.r.t.
refinement of model elements throughout the development life cycle and
employment of interaction diagrams fo formalize use cases, The paper will shed
some light on how these issues may be handled with UML.

1 Introduction

"When it comes down to it, the real point of software development is cutting code.
Diagrams are, after all, just pretty pictures." [4, p.7]

This opinion is still alive among researchers working in the area of software
development as well as practitioners involved in software projects. Nonetheless, it has
been more and more commonly accepted that the early phases of software
development such as requirements specification, analysis, and design are key to the
successful development and deployment of software systems. Not least due to the
usage of some intuitive but rigor diagrammatic notations representing the artifacts of
these development phases the software development process has been improved
considerably. Object-oriented software development follows the same lines of
thought. From the very beginning of requirements specification, object-oriented
modeling notations provide intuitive mechanisms for representing the objects and

10

their interactions for reaching a common goal, namely the required system
functionality.

Several object-oriented modeling notations and methods had been developed in the
late eighties and early nineties (for an overview we refer to [5]). After different
merging efforts and a request for proposals by the Object Management Group, UML
(Unified Modeling Language) was adopted in November 1997 as the official industry
standard for object-oriented software medeling notations 3, 4].

UML covers several advantages, among which only three shall be mentioned here.
First and most importantly, the standardization of UML helps to bypass notational
discussions and to concentrate on the real problems, such as modeling guidelines and
design heuristics, proper development process, and proper tool support. Second,
UML represents the fusion of the Booch method, Jacobson's Objectory, and
Rumbaugh's OMT. As such and thanks to Objectory, the very first step of object-
oriented modeling does not encompass finding objects in the problem domain - as has
been the case in most other object-oriented modeling techniques - but the
identification of the system functionality as required by the users. These so called use
cases correspond to what has been depicted in level zero data flow diagrams known
from traditional structured analysis. With use cases it has been possible both to
overcome the "everything is an object and everything taken from structured
development is bad"-mentality and to concentrate at the very beginning of software
development on the user's requirements, which is just functionality and not objects.
And third, different model views supported by UML allow to comprehend a complex
system in terms of its essential characteristics. These are its systern functionality (use
case view), its internal static and dynamic structure (logical view), its synchronization
behavior (concurrency view), and its implementation and physical layout
(deployment view, component view) [3]. In this contribution, however, we will not
dig into a further discussion of UML’s goodies, but rather concentrate on pitfalls
(which are more interesting anyway).

The main problems encountered during the development of a web-based calendar
manager [8] are due to UMLs partially sloppy definition of notations, which lack a
precise semantic specification. The main contribution of this paper is to shed some
light on some of these deficiencies and discuss possible workarounds, some of which
may be considered as suggestions of future enhancements of the notation. In the next
section some refinements of UML constructs are discussed. Section 3 concentrates on
the employment of interaction diagrams to formalize use cases. Finally, Section 4
points to the development of data-intensive, distributed applications based on
component technology. Section 5 concludes the paper.

2 Refinement of Models

Development of complex systems based on various model views requires that the
modeled diagrams can be related to each other for the purpose of traceability, i.c.,
connecting two model elements that represent the same concept at different levels of
granularity. In addition, consistency checking between various model views

1

representing different though overlapping characteristics of the system at hand is a
prerequisite for correct system development. Last but not least, most applications
have to cope dynamically with changing requirements. Thus, various kinds of
evolution mechanisms should be provided by the modeling notation. To adequately
support traceability, consistency checking, and evolution, UML should provide for
the refinement of model elements. In this context, refinement refers to "... a historical
or derivation connection between two model elements with a mapping (not
necessarily complete) between them.” [16, p.71]. Note, that in contrast to the official
UML document which refers to traceability as being mainly a tools and process
problem we advocate the necessity to offer some kind of "meta notation" to
graphically relate model elements which are derived from each other. In the following
we will question some of UML's refinement mechanisms. We will investigate use
case diagrams, class diagrams, and statechart diagrams. Sequence diagrams are
discussed in the context of use case diagrams, too.

2.1 Refinement of Use Case Diagrams

A use case represents some system functionality. Several use cases together depicted
in a use case diagram (not necessarily limited to a single physical page) make up the
whole system to be implemented. To support both reuse and the stepwise
specification of the required functionality, two use case relationships are provided by
UML, the extends relationship, and the uses! relationship. Their precise meaning,
however, is only poorly specified.

Fig. 1. Extends relationship between two use cases

Concerning the extends relationship, in [16, p.78] it is stated that if use case A
extends use case B then an instance of use case B may include the behavior specified
by A. Figure 1 depicts such a use case relationship. In the object-oriented literature
there are two well-known interpretations for this relationship, which are captured by
the inner concept of Beta and the super concept of Smalltalk, respectively.

! At the time of publication of this paper — Oct. 98 — the OMG UML revision task force is
discussing UML 1.3, where "uses" will be renamed to "includes". Since these documents
have not been officially released, we stick to the notions of the official UML 1.1
documentation,

