Real Estate Modelling and Forecasting

CHRIS BROOKS AND SOTIRIS TSOLACOS

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

Information on this title: www.cambridge.org/9780521873390

© Chris Brooks and Sotiris Tsolacos 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Brooks, Chris

Real estate modelling and forecasting / Chris Brooks, Sotiris Tsolacos.

p. cm

Includes bibliographical references and index.

ISBN 978-0-521-87339-0

1. Real estate investment - Statistical methods. I. Tsolacos, Sotiris. II. Title.

HD1382.5.B756 2010

332.63'2401 - dc22 2009054017

ISBN 978-0-521-87339-0 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Real Estate Modelling and Forecasting

As real estate forms a significant part of the asset portfolios of most investors and lenders, it is crucial that analysts and institutions employ sound techniques for modelling and forecasting the performance of real estate assets. Assuming no prior knowledge of econometrics, this book introduces and explains a broad range of quantitative techniques that are relevant for the analysis of real estate data. It includes numerous detailed examples, giving readers the confidence they need to estimate and interpret their own models. Throughout, the book emphasises how various statistical techniques may be used for forecasting and shows how forecasts can be evaluated. Written by a highly experienced teacher of econometrics and a senior real estate professional, both of whom are widely known for their research, *Real Estate Modelling and Forecasting* is the first book to provide a practical introduction to the econometric analysis of real estate for students and practitioners.

Chris Brooks is Professor of Finance and Director of Research at the ICMA Centre, University of Reading, United Kingdom, where he also obtained his PhD. He has published over sixty articles in leading academic and practitioner journals, including the Journal of Business, the Journal of Banking and Finance, the Journal of Empirical Finance, the Review of Economics and Statistics and the Economic Journal. He is associate editor of a number of journals, including the International Journal of Forecasting. He has also acted as consultant for various banks and professional bodies in the fields of finance, econometrics and real estate. He is the author of the best-selling textbook Introductory Econometrics for Finance (Cambridge University Press, 2009), now in its second edition.

Sotiris Tsolacos is Director of European Research at Property and Portfolio Research, a CoStar Group company. He has previously held positions with Jones Lang LaSalle Research and the University of Reading, where he also obtained his PhD. He has carried out extensive research work on modelling and forecasting real estate markets, with over forty papers published in major international real estate research and applied economics journals. He is also a regular commentator on topical themes in the real estate market, with numerous contributions to practitioner journals.

Preface

Motivations for the book

This book is designed to address the quantitative needs of students and practitioners of real estate analysis. Real estate is a truly multidisciplinary field. It combines specialities from urban economics, geography, land management, town planning, construction, valuations, surveying, finance, business economics and other areas in order to perform a range of tasks, including portfolio strategy, valuations, risk assessment and development feasibility. In performing these tasks, objective analysis, systematic relationships and greater sophistication are essential. The present book targets this fundamental need in the market.

The demand for modelling and forecasting work is expanding rapidly, with a direct requirement for insightful and well-informed processes to be in place. The growing number and larger size of forecasting teams within firms compared with just a few years ago, and the existence of forecasting-related research sponsored by industry organisations and of professional courses in this area, demonstrate the significance given by the industry to quantitative modelling and forecasting.

At the same time, undergraduate and postgraduate courses in real estate have increasingly introduced more quantitative analysis into their portfolios of modules. Such students rarely come from a statistics background, which is acknowledged in this book. With increasing demands from employers for their applicants to have received statistical training, academic institutions and other educational establishments need to introduce more formal quantitative analysis in their degrees. Given the greater availability of data, firms require that their intake will be able to analyse the data and to support valuations, fund management and other activities.

There is a dearth of textbooks specifically focused on the quantitative analysis of real estate markets, yet there has been an explosion of academic articles in the last ten years offering a variety of models, estimation methodologies and findings. Nevertheless, authors often use different criteria to evaluate their models, if they use any at all, and authors avoid discussing the factors that could invalidate their findings from a modelling point of view. This could lead to considerable confusion for readers who are not already familiar with the material. More importantly, just a handful of studies in this large literature will proceed to assess the model's adequacy and to engage in comparative analysis. This book aims to equip the reader with the knowledge to understand and evaluate empirical work in real estate modelling and forecasting.

Who should read this book?

The book is intended as an easy-to-read guide to using quantitative methods for solving problems in real estate that will be accessible to advanced undergraduate and Masters students, as well as practitioners who require knowledge of the econometric techniques commonly used in the real estate field. Use of the book may also extend to doctoral programmes in which students do not have strong backgrounds in econometric techniques but wish to conduct robust empirical research in real estate. The book can also be used by academic researchers whose work requires the undertaking of statistical analysis.

This book is also very much aimed at real estate practitioners. Analysts in research, investment, consultancy and other areas who require an introduction to the statistical tools employed to model real estate relationships and perform forecasting in practice will find this book relevant to their work. The book should also be useful for the growing number of professional education programmes in real estate modelling.

There are, of course, large numbers of econometrics textbooks, but the majority of these go through the introductory material in excruciating detail rather than being targeted at what really matters in real estate. Additionally, and more importantly, in such books, all the examples employed to illustrate the techniques are drawn from pure economics rather than real estate. Students of real estate who are required to learn some technical skills rapidly grow tired of such texts, and practitioners cannot relate to the examples, making it more difficult for them to see how the ideas could be applied.

Unique features of the book

(1) The reader can confidently claim an understanding of the methodologies used in real estate modelling. Great emphasis is put on regression analysis as the backbone of quantitative real estate analysis.

- (2) Extensive examples: the range of international illustrations shows the reader the kind of relationships investigated in real estate market analysis. The examples are supported by a review of selected studies from the literature.
- (3) The work on modelling in the book is extended to forecasting. The tone in the book is that forecasting in real estate is not, and should never be seen as, a black box. The detailed examples given in each chapter enable the reader to perform forecasting using all the methodologies we present.
- (4) In much of the existing literature in real estate modelling and forecasting, there is a noticeable gap, in that diagnostic checking and forecast evaluation are overlooked. We examine these issues comprehensively and we devote a chapter to each of them. Our aim is to educate the reader to assess alternative theoretical propositions and/or the same proposition in different contexts and with diverse data.
- (5) Hall (1994) argues that, 'while the technical aspects of forecasting are developing rapidly, there is still a need for the expert forecaster who blends a complex combination of real world institutional knowledge with formal academic modelling techniques to produce a credible view of the future' (p. iv). We devote a chapter to how real estate forecasting is carried out in practice and we highlight a host of practical issues of which the quantitative analyst, the expert and the final user should be aware. This chapter includes propositions as to how these parties can work more closely, make the forecast process more transparent and evaluate it.
- (6) This book also studies the potential benefits of more complicated techniques, such as vector autoregressions, simultaneous systems and cointegration. We attempt to demystify these techniques and make them as accessible as possible. They are explained exhaustively and, again, the coverage extends to forecasting.
- (7) All the data used in the examples are available on the book's companion website, www.cambridge.org/9780521873390.

Prerequisites for a good understanding of this material

In order to make this book as accessible as possible, the only background recommended in terms of quantitative techniques is that readers have an introductory-level knowledge of calculus, algebra (including matrices) and basic statistics. Even these are not necessarily prerequisites, however, since they are covered in the opening chapters of the book. The emphasis throughout the book is on a valid application of the techniques to real data and problems in real estate.

In the real estate area, it is assumed that the reader has basic knowledge of real estate theory, although, again, this is not strictly necessary. The aim of the book is to enable the reader to investigate and assess alternative theories in practice and in different contexts.

Our ambition

This book will be successful only if the reader is able to confidently carry out his/her own quantitative analysis, interpret conventional statistics encountered in similar studies in the fields of economics and finance, and conduct forecasting. We hope that the book achieves this aspiration.

Chris Brooks and Sotiris Tsolacos, April 2009

Acknowledgements

The authors are grateful to to Hilary Feltham for assistance with the material in chapter 2.

The publisher and authors have used their best endeavours to ensure that the URLs for external websites referred to in this book are correct and active at the time of going to press. The publisher and author have no responsibility for the websites, however, and can make no guarantee that a site will remain live or that the content is or will remain appropriate.

Contents

	List of figures	page x
	List of tables	xi
	List of boxes	xiv
	Preface	χV
	Acknowledgements	xix
1	Introduction	1
1.1	Motivation for this book	2
1.2	What is econometrics?	3
1.3	Steps in formulating an econometric model	4
1.4	Model building in real estate	5
1.5	What do we model and forecast in real estate?	ϵ
1.6	Model categorisation for real estate forecasting	8
1.7	Why real estate forecasting?	9
1.8	Econometrics in real estate, finance and economics: similarities and	i
	differences	12
1.9	Econometric packages for modelling real estate data	13
1.10	Outline of the remainder of this book	15
	Appendix: Econometric software package suppliers	20
2	Mathematical building blocks for real estate analysis	21
2.1	Introduction	21
2.2	Constructing price index numbers	21
2.3	Real versus nominal series and deflating nominal series	29
2.4	Properties of logarithms and the log transform	32
2.5	Returns	33
2.6	Matrices	34
2.7	The eigenvalues of a matrix	38

vi Contents

3	Statistical tools for real estate analysis	41
3.1	Types of data for quantitative real estate analysis	41
3.2	Descriptive statistics	44
3.3	Probability and characteristics of probability distributions	54
3.4	Hypothesis testing	55
3.5	Pitfalls in the analysis of real estate data	65
4	An overview of regression analysis	72
4.1	Chapter objectives	72
4.2	What is a regression model?	73
4.3	Regression versus correlation	74
4.4	Simple regression	74
4.5	Some further terminology	79
4.6	Linearity and possible forms for the regression function	85
4.7	The assumptions underlying the classical linear regression model	86
4.8	Properties of the OLS estimator	87
4.9	Precision and standard errors	88
4.10	Statistical inference and the classical linear regression model	93
	Appendix: Mathematical derivations of CLRM results for the	
	bivariate case	104
4A.1		104
4A.2	Derivation of the OLS standard error estimators for the intercept	
	and slope	105
5	Further issues in regression analysis	108
5.1	Generalising the simple model to multiple linear regression	108
5.2	The constant term	109
5.3	How are the parameters (the elements of the β vector) calculated in	
	the generalised case?	111
	A special type of hypothesis test: the <i>t</i> -ratio	113
5.5	Goodness of fit statistics	115
5.6	Tests of non-nested hypotheses	119
5.7	Data mining and the true size of the test	123
5.8	Testing multiple hypotheses: the <i>F</i> -test	124
5.9	Omission of an important variable	129
5.10	Inclusion of an irrelevant variable	130
	Appendix: Mathematical derivations of CLRM results for the	
	multiple regression case	133
5A.1	Derivation of the OLS coefficient estimator	133
5A.2	Derivation of the OLS standard error estimator	134

	Contents	V11
6	Diagnostic testing	135
6.1		135
6.2	Violations of the assumptions of the classical linear regression	
	model	136
6.3	Statistical distributions for diagnostic tests	136
6.4	Assumption 1: $E(u_t) = 0$	137
6.5	Assumption 2: $var(u_t) = \sigma^2 < \infty$	138
6.6	Assumption 3: $cov(u_i, u_j) = 0$ for $i \neq j$	144
6.7	Causes of residual autocorrelation	152
6.8	Assumption 4: the x_t are non-stochastic (cov (u_t , x_t) = 0)	166
6.9	Assumption 5: the disturbances are normally distributed	167
5.10	Multicollinearity	171
5.11	Adopting the wrong functional form	175
5.12	Parameter stability tests	178
5.13	A strategy for constructing econometric models	186
	Appendix: Iterative procedures for dealing with autocorrelation	191
7	Applications of regression analysis	194
7.1	Frankfurt office rents: constructing a multiple regression model	194
7.2	Time series regression models from the literature	210
7.3	International office yields: a cross-sectional analysis	214
7.4	A cross-sectional regression model from the literature	222
8	Time series models	225
8.1	Introduction	225
8.2	Some notation and concepts	226
8.3	Moving average processes	230
8.4	Autoregressive processes	231
8.5	The partial autocorrelation function	234
8.6	ARMA processes	235
8.7	Building ARMA models: the Box–Jenkins approach	241
8.8	Exponential smoothing	244
8.9	An ARMA model for cap rates	246
8.10	Seasonality in real estate data	251
8.11	Studies using ARMA models in real estate	257
	Appendix: Some derivations of properties of ARMA models	261
8A.1	Deriving the autocorrelation function for an MA process	261
8A.2	Deriving the properties of AR models	263
9	Forecast evaluation	268
9.1	Forecast tests	269

viii Contents

9.2	Application of forecast evaluation criteria to a simple regression	
	model	274
9.3	Forecast accuracy studies in real estate	290
10	Multi-equation structural models	303
10.1	Simultaneous-equation models	304
10.2	Simultaneous equations bias	306
10.3	How can simultaneous-equation models be estimated?	307
10.4	Can the original coefficients be retrieved from the π s?	308
10.5	A definition of exogeneity	310
10.6	Estimation procedures for simultaneous equations systems	313
10.7	Case study: projections in the industrial property market using a	
	simultaneous equations system	316
10.8	A special case: recursive models	322
10.9	Case study: an application of a recursive model to the City of London	
	office market	322
10.10	Example: a recursive system for the Tokyo office market	325
11	Vector autoregressive models	337
11.1	Introduction	337
11.2	Advantages of VAR modelling	339
11.3	Problems with VARs	340
11.4	Choosing the optimal lag length for a VAR	340
11.5	Does the VAR include contemporaneous terms?	342
11.6	A VAR model for real estate investment trusts	344
11.7	Block significance and causality tests	347
11.8	VARs with exogenous variables	352
11.9	Impulse responses and variance decompositions	352
11.10	A VAR for the interaction between real estate returns and the	
	macroeconomy	357
11.11	Using VARs for forecasting	362
12	Cointegration in real estate markets	369
12.1	Stationarity and unit root testing	369
12.2	Cointegration	382
12.3	Equilibrium correction or error correction models	385
12.4	Testing for cointegration in regression: a residuals-based	
	approach	387
12.5	Methods of parameter estimation in cointegrated systems	388
12.6	Applying the Engle-Granger procedure: the Sydney office market	390

Contents ix

12.7	The Engle and Yoo three-step method	399
12.8	Testing for and estimating cointegrating systems using the	
	Johansen technique	399
12.9	An application of the Johansen technique to securitised	
	real estate	404
12.10	The Johansen approach: a case study	411
13	Real estate forecasting in practice	414
13.1	Reasons to intervene in forecasting and to use judgement	415
13.2	How do we intervene in and adjust model-based forecasts?	418
13.3	Issues with judgemental forecasting	422
13.4	Case study: forecasting in practice in the United Kingdom	424
13.5	Increasing the acceptability of intervention	426
13.6	Integration of econometric and judgemental forecasts	427
13.7	How can we conduct scenario analysis when judgement is applied?	432
13.8	Making the forecast process effective	432
14	The way forward for real estate modelling and forecasting	434
	References	441
	Index	448

Figures

1.1	Steps involved in forming an		4.9	Effect on the standard errors of the	
	econometric model	page 4		coefficient estimates when $(x_t - \bar{x})$ are	
1.2	Summary of forecast approaches	9		narrowly dispersed	91
2.1	Index of office rents in Singapore	32	4.10	Effect on the standard errors of the	
3.1	A normal versus a skewed distribution	52		coefficient estimates when $(x_t - \bar{x})$ are	
3.2	A leptokurtic versus a normal			widely dispersed	91
	distribution	52	4.11	Effect on the standard errors of x_t^2	
3.3	The normal distribution	58		large	92
3.4	The t-distribution versus the normal	59	4.12	Effect on the standard errors of x_t^2 small	92
3.5	Rejection regions for a two-sided		4.13	Critical values and rejection regions for	
	5 per cent hypothesis test	61		a t _{20;5%}	97
3.6	Rejection region for a one-sided		5.1	$R^2 = 0$ demonstrated by a flat estimated	
	hypothesis test of the form H_0 : $\mu = \mu^*$,			line	117
	$H_1: \mu < \mu^*$	61	5.2	$R^2 = 1$ when all data points lie exactly	
3.7	Rejection region for a one-sided			on the estimated line	118
	hypothesis test of the form H_0 : $\mu = \mu^*$,		6.1	Effect of no intercept on a regression	
	H_1 : $\mu > \mu^*$	61		line	138
3.8	Series with different types of trends	68	6.2	Graphical illustration of	
3.9	Sample time series plot illustrating a			heteroscedasticity	139
	regime shift	69	6.3	Plot of \hat{u}_t against \hat{u}_{t-1} , showing positive	
4.1	Scatter plot of two variables, y and x	<i>7</i> 5		autocorrelation	146
4.2	Scatter plot of two variables with a line		6.4	Plot of \hat{u}_t over time, showing positive	
	of best fit chosen by eye	76		autocorrelation	146
4.3	Method of OLS fitting a line to the data		6.5	Plot of \hat{u}_t against \hat{u}_{t-1} , showing negative	
	by minimising the sum of squared			autocorrelation	147
	residuals	77	6.6	Plot of \hat{u}_t over time, showing negative	
4.4	Plot of a single observation, together			autocorrelation	147
	with the line of best fit, the residual and	1 .	6.7	Plot of \hat{u}_t against \hat{u}_{t-1} , showing no	
	the fitted value	78		autocorrelation	148
4.5	Plot of the two variables	81	6.8	Plot of \hat{u}_t over time, showing no	
4.6	Scatter plot of rent and employment			autocorrelation	148
	growth	82	6.9	Rejection and non-rejection regions for	
4.7	No observations close to the y-axis	83		DW test	152
4.8	Actual and fitted values and residuals		6.10	Regression residuals showing a large	
	for RR regression	84		outlier	170

5.11	Possible effect of an outlier on OLS		8.14	Use of intercept dummy variables for	
	estimation	170		quarterly data	254
5.12	Plot of a variable showing suggestion for		8.15	Use of slope dummy variables	254
	break date	184	8.16	Forecasts of ARMA models (with seasonal	
7.1	A theoretical structure for the			dummies for second and third quarters)	257
	determination of rents	195	8.17	Forecasts of ARMA models (with	
7.2	Variables for the Frankfurt example	198		seasonal dummy for third quarter only)	257
7.3	Actual, fitted and residual values of rent		8.18	Autocorrelation function for sample	
	growth regressions	203		MA(2) process	263
7.4	Actual and fitted values for		10.1	Actual values and historical simulation	
	international office yields	220		of new industrial building supply	320
3.1	Sample autocorrelation and partial		10.2	Actual values and historical simulation	
	autocorrelation functions for an MA(1)			of real industrial rents	321
	model: $y_t = -0.5u_{t-1} + u_t$	237	10.3	Actual values and historical simulation	
3.2	Sample autocorrelation and partial			of industrial floor space availability	321
	autocorrelation functions for an MA(2)		10.4	Actual and equilibrium real office rents	
	model: $y_t = 0.5u_{t-1} - 0.25u_{t-2} + u_t$	238		in Tokyo	326
8.3	Sample autocorrelation and partial		11.1	Impulse responses for REIT returns	357
	autocorrelation functions for a slowly		11.2	Impulse responses and standard error	
	decaying AR(1) model: $y_t = 0.9y_{t-1} + u_t$	238		bands for innovations in unexpected	
8.4	Sample autocorrelation and partial			inflation equation errors	362
	autocorrelation functions for a more		11.3	Impulse responses and standard error	
	rapidly decaying AR(1) model:			bands for innovations in the dividend	
	$y_t = 0.5y_{t-1} + u_t$	239		yields	362
8.5	Sample autocorrelation and partial		12.1	Value of R^2 for 1,000 sets of regressions	
	autocorrelation functions for a more			of a non-stationary variable on another	
	rapidly decaying AR(1) model with			independent non-stationary variable	370
	negative coefficient: $y_t = -0.5y_{t-1} + u_t$	239	12.2	Value of t-ratio of slope coefficient for	
8.6	Sample autocorrelation and partial			1,000 sets of regressions of a	
	autocorrelation functions for a			non-stationary variable on another	
	non-stationary model (i.e. a unit			independent non-stationary variable	371
	coefficient): $y_t = y_{t-1} + u_t$	240	12.3	Example of a white noise process	375
8.7	Sample autocorrelation and partial		12.4	Time series plot of a random walk versus	
	autocorrelation functions for an			a random walk with drift	375
	ARMA(1, 1) model:		12.5	Time series plot of a deterministic trend	
	$y_t = 0.5y_{t-1} + 0.5u_{t-1} + u_t$	240		process	376
8.8	Cap rates first quarter 1978-fourth		12.6	Autoregressive processes with differing	
	quarter 2007	246		values of ϕ (0, 0.8, 1)	376
8.9	Autocorrelation and partial		12.7	Plot of Sydney office rents and economic	
	autocorrelation functions for cap rates	247		variables	391
8.10	Cap rates in first differences	247		Residuals of Engle-Granger equations	394
8.11	Autocorrelation and partial			Securitised real estate indices	405
	autocorrelation functions for cap rates		12.10	The securitised real estate returns	
	in first differences	248		series	405
8.12				The deviation from equilibrium	408
	first differences	249		2 Ex post VECM predictions	411
8.13	Plot of actual and forecast cap rates	251	13.1	Forecasting model intervention	431

Tables

1.1	Econometric software packages for		7.9	Regression model estimates for the	
	modelling financial data	page 14		predictive failure test	208
2.1	Mean house prices by district, British		7.10	Regression results for models with	
	pounds	25		lagged rent growth terms	209
2.2	Property sales by district	26	7.11	Office yields	215
2.3	Average house prices across all		7.12	Variable description for global office	
	districts	26		yield model	222
2.4	Laspeyres weights in index	27	8.1	Selecting the ARMA specification for cap	
2.5	Current weights for each year	28		rates	248
2.6	Index values calculated using various		8.2	Estimation of ARMA (3,3)	249
	methods	28	8.3	Actual and forecast cap rates	250
2.7	Construction of a real rent index for		8.4	ARMA with seasonal dummies	255
	offices in Singapore	31	8.5	Actual and forecast cap rates including	
3.1	Summary statistics for Frankfurt and			seasonal dummies	256
	Munich returns	50	9.1	Regression models for Frankfurt office	
3.2	Skewness and kurtosis for Frankfurt an	d		rents	275
	Munich	53	9.2	Data and forecasts for rent growth in	
3.3	Critical values from the standard			Frankfurt	276
	normal versus t -distribution	59	9.3	Calculation of forecasts for Frankfurt	
4.1	Classifying hypothesis-testing errors an	ıd		office rents	276
	correct conclusions	99	9.4	Evaluation of forecasts for Frankfurt	
6.1	Constructing a series of lagged values			rent growth	278
	and first differences	145	9.5	Estimates for an alternative model for	
7.1	Autocorrelation coefficients	199		Frankfurt rents	279
7.2	Cross-correlations with annual data for	•	9.6	Evaluating the forecasts from the	
	RRg_t	200		alternative model for Frankfurt office	
7.3	Regression models for Frankfurt rents	202		rents	281
7.4	Respecified regression models for		9.7	Evaluating the combination of forecasts	
	Frankfurt rents	202		for Frankfurt office rents	283
7.5	Tests for first- and second-order serial		9.8	Data on real rent growth for forecast	
	correlation	205		efficiency and encompassing tests	284
7.6	White's test for heteroscedasticity	206	9.9	Coefficient values from rolling	
7.7	RESET results	207		estimations, data and forecasts	286
7.8	Chow test results for regression models	s 207	9.10	Forecast evaluation	287

List of tables xiii

9.11	Example of sign and direction		11.7 Variance decompositions for ARPRET	
	predictions	289	equation residuals	355
9.12	Empirical forms of equations (9.25) to		11.8 Variance decompositions for ARPRET	
	(9.28)	294	equation residuals: alternative ordering	356
9.13	Evaluation of two-year-ahead forecasts of		11.9 Marginal significance levels associated	
	all-property rents	296	with joint F-tests	360
9.14	Evaluation of two-year-ahead forecasts of		11.10 Variance decompositions for property	
	all-property total returns	297	sector index residuals	361
9.15	Mean forecast errors for the changes in		11.11 Dynamic VAR forecasts	363
	rents series	299	11.12 VAR forecasts conditioned on future	
9.16	Mean squared forecast errors for the		values of $\Delta 10Y$	365
	changes in rents series	300	11.13 Coefficients for VAR forecasts estimated	
9.17	Percentage of correct sign predictions		using data for March 1972 to January	
	for the changes in rents series	301	2007	366
10.1	OLS estimates of system of equations		11.14 Ex post VAR dynamic forecasts	366
	(10.53) to (10.55)	318	11.15 Conditional VAR forecasts	367
10.2	2SLS estimates of system of equations		11.16 VAR forecast evaluation	367
	(10.53) to (10.55)	319	12.1 Critical values for DF tests	379
10.3	Simulations from the system of		12.2 Unit root tests for office rents in	
	equations	329	Sydney	391
10.4	Actual and simulated values for the		12.3 ADF tests on residuals of potentially	
	Tokyo office market	331	cointegrating equations	393
10.5	Simulations from the system of revised		12.4 Ex post forecasts from error correction	
	equations	334	model	397
10.6	Evaluation of forecasts	335	12.5 Forecast evaluation	398
11.1	VAR lag length selection	346	12.6 Ex ante forecasts from the error	
11.2	VAR results	347	correction model	398
11.3	Granger causality tests and implied		12.7 Unit root tests for securitised real estate	
	restrictions on VAR models	348	price indices	407
11.4	Joint significance tests for yields	349	12.8 Johansen tests for cointegration between	
	Granger causality tests between returns		Asia, the United States and Europe	408
	and yields	351	12.9 Dynamic model (VECM)	409
11.6	Residual correlations	355	12.10 VECM ex ante forecasts	410