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Preface

When the first edition of this book came out in 1960 there
were only three or four other texts available in English for use in
undergraduate courses in abstract algebra. The increased recognition
of the importance of this subject in the training of mathematicians
and of teachers of mathematics may be indicated by the fact that
some twenty additional texts have appeared since that time.

This book requires somewhat less mathematical sophistication
on the part of the student than do most of the other available texts.
As was true for the first edition, this revised edition is intended to
be understandable by students who have had little or no background
in abstract mathematies and are just beginning the study of abstract
algebra.

The general organization and style have not been changed in
any essential way. Although some sections and even a few chapters
have been modified only slightly or not at all, there have been some
fairly substantial changes in content and emphasis. The principal
changes which have been introduced in this edition are the following.

Mappings, especially homomorphisms, are introduced fairly
early and emphasized throughout. Although the elementary number
systems still occupy a central place in the early part of the book,
the real numbers are treated very briefly instead of in full detail.
Groups are presented before polynomials, although the order of these
two chapters could be reversed with no particular difficulty. The
study of groups is carried through normal subgroups, quotient
groups, and the fundamental theorem on group homomorphisms. A
short chapter on ideals and quotient rings then carries the theory of
rings to approximately the same point; that is, through the funda-
mental theorem on ring homomorphisms. Finally, the chapter on
linear transformations and matrices has been rewritten and expanded
somewhat.

Many of the lists of exercises have been extended, particularly
by the addition of some more difficult ones. In my classes, I have
often used some of these as ‘“‘optional exercises” with which to
challenge the better students.
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A minor change has been the adoption of what is becoming
almost standard notation, namely, Z, Z,, Q, R, and C for, respec-
tively, the ring of integers, the ring of integers modulo n, and the
fields of rational numbers, real numbers, and complex numbers.

Professor Robert J. Smith gave the final manuscript a careful
reading, and I am indebted to him for catching a number of slips
and also for some valuable suggestions which have improved the
accuracy or the clarity at several points in the text.

I am greatly indebted to my former colleague and long-time
friend, Professor Richard E. Johnson, who offered to read the proofs
of this book when he learned that I was unable to read them at the
time the task needed to be done. Although I accept the responsibility
for those slips which may possibly remain, I am most grateful for his
generous and unselfish assistance.

Northampton, Mass. NeAL H. McCoy

From the Preface to the First Edition

This book is designed as a text for a first course in modern
abstract algebra. Since many students find such a course fairly diffi-
cult, it has been my goal to make the exposition as clear and simple
as possible but, at the same time, sufficiently precise and thorough
to furnish an honest introduction to the methods and results of
abstract algebra.

I have taught a preliminary version of this book to a Smith
College class at the undergraduate level, and Professor W. H. Durfee
has taught about half of it to a Mount Holyoke College class at the
same level. In addition, I have taught various preliminary versions
of parts of the first few chapters in three Summer Institutes for High
School Teachers, two at the State University of Iowa and one at
Randolph-Macon Woman’s College, and also in an Academic Year
Institute at the University of North Carolina. I am greatly indebted
to all those former students who by their questions and difficulties
have helped to improve the exposition in various ways. Professor
Durfee also made several valuable suggestions as a result of his
experience in teaching part of the material.

It would not be possible to list all of those to whom I am in-
debted in a direct or indirect way. However, I would like to mention
a special indebtedness to my colleague, Professor R. E. Johnson.
Although, for the most part, I did not discuss with him the choice

Preface
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of topics or the way in which they were to be presented, nevertheless,
over the years we have had many discussions on various topics in
abstract algebra and on the pedagogical problems involved in teach-
ing this subject matter. Accordingly, he has had a substantial, al-
though partially indirect, influence on this book. I have also taught
his excellent text in this same field and have been consciously influ-
enced by it in certain ways, and no doubt have been unconsciously
influenced in other ways as well. In addition, I am grateful to him
for substantial help in reading the galley proofs.

Finally, it is a pleasure to express my appreciation to my wife,
Ardis, without whose inspiration and encouragement this book would
never have been written.

Northampton, Mass. NEAL H. McCoy
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Some Fundamental

Concepts

The outstanding characteristic of modern algebra, and indeed
also of many other branches of modern mathematics, is its extensive
use of what is known as the axiomatic or postulational method. The
method itself is not new, since it was used by Euclid (about 300 B.C.)
in his construction of geometry as a deductive science. However, in
many ways the modern viewpoint is quite different from Euclid’s,
and the power of the method did not become apparent until this
century.

We shall not attempt to give here any description or analysis
of the postulational method, but the material of the next few chapters
will illustrate the ideas involved. This first brief chapter will present
a few basic concepts to be used repeatedly, and will introduce some
convenient notation. Although the reader may have previously met
some, or even all, of these concepts, they are so fundamental for our
purposes that it seems desirable to start off by presenting them in
some detail. Many more illustrations of each concept will appear in
later chapters.

1.1 Sets

The concept of set (class, collection, aggregate) is fundamental
in mathematics as it is in everyday life. A related concept is that of
element of a set. We make no attempt to define these terms but shall
presently give some examples that will illustrate the sense in which
they are being used.

1.1 - Sets



First of all, we may say that a set is made up of elements. In
order to give an example of a set we need, therefore, to exhibit its
elements or to give some rule that will specify its elements. We shall
often find it convenient to denote sets by capital letters and elements
of sets by lower-case letters. If ¢ is an element of the set A, we may
indicate this fact by writing @« € A (read, “a is an element of A”").
Also, a & A will mean that a is not an element of the set A. If both
o and b are elements of the set A, we may write o, b € A.

If P is the set of all positive integers, ¢ € P means merely
that a is a positive integer. Certainly, then, it is true that 1 € P,
2 € P, and so on. If B is the set of all triangles in a given plane,
o € B means that a is one of the triangles in this plane. If C is the
set of all books in the Library of Congress, then @ € C means that a
is one of these books. We shall presently give other examples of sets.

If a, b € A and we write a = b, it is always to be understood
that these are identical elements of A. Otherwise expressed, a and b
are merely different symbols designating the same element of A. If
a, b € A and it is not true that ¢ = b, we may indicate this fact by
writing a > b and may say that o and b are distinct elements of A.

If A and B are sets with the property that every element of
A is also an element of B, we call A a subset of B and write A C B
(read, “A is contained in B’’). Perhaps we should point out that for
every set A it is true that A € A and hence, according to our
definition, one of the subsets of A is A itself. If A € B and also
B C A, then A and B have exactly the same elements and we say
that these sets are equal, and indicate this by writing A = B. If it
is not true that A = B, we may write A = B.If A C Band A # B,
then we say that A is a proper subset of B and indicate this fact by
the notation A C B (read, “A is properly contained in B”’). Clearly,
A C B means that every element of A is an element of B and,
moreover, B contains at least one element which is not an element
of A.

Sometimes, as has been the case so far, we may specify a set
by stating in words just what its elements are. Another way of
specifying a set is to exhibit its elements. Thus, {x} indicates the set
which consists of the single element z, {x, y} the set consisting of the
two elements « and y, and so on. We may write A = {1, 2, 3, 4} to
mean that A is the set whose elements are the positive integers 1, 2,
3, and 4. If P is the set of all positive integers, by writing

K = {a|a € P, a divisible by 2},

Some Fundamental Concepts - Ch. 1
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we shall mean that K consists of all elements a having the properties
indicated after the vertical bar, that is, a is a positive integer and is
divisible by 2. Hence, K is just the set of all even positive integers.
We may also write

K = {2r476;87 "'}7

the dots indicating that all even positive integers are included in this
set. As another example, if

D={a|la€ P,a <6},

then it is clear that D = {1, 2, 3, 4, 5}.

Whenever we specify a set by exhibiting its elements, it is to
be understood that the indicated elements are distinet. Thus, for
example, if we write B = {x, 4, z}, we mean to imply that x = y,
x # 2z, and y # z.

For many purposes, it is convenient to allow for the possibility
that a set may have no eiements. This fictitious set with no elements
we shall call the empty set. According to the definition of subset given
above, the empty set is a subset of every set. Moreover, it is a proper
subset of every set except the empty set itself. The empty set is often
designated by &F, and thus we have @f C A for every set A.

If A and B are sets, the elements that are in both A and B
form a set called the intersection of A and B, denoted by A N B. Of
course, if A and B have no elements in common, A N\ B = &.

If A and B are sets, the set consisting of those elements which
are elements either of A or of B (or of both), is a set called the union
of A and B, denoted by A U B.

As examples of the concepts of intersection and union, let
A={1,238}, B={2,4,5}, and C = {1, 3, 6}. Then we have
ANB={2},,ANC={,3,BNC=g,AUB = {1,2,3,4,5},
AUC={1,28,6,,and BUC = {1,2,3,4,5, 6.

Although we have defined the intersection and the union of
only two sets, it is easy to extend these definitions to any number of
sets, as follows. The intersection of any number of given sets is the
set consisting of those elements which are in all the given sets, and
the union is the set consisting of those elements which are in at least
one of the given sets.

If A, B, and C are sets, each of the following is an immediate
consequence of the various definitions which we have made:

ANBCZCAand A NBCB.

1.1 - Sets



AUBand BC A U B.

B = Aif and only if A C B.

B = Aif and only if B C A.

IfBCC,thenA UBCAUCandANBCANC.

A
A
A

cDoin

In working with sets, so-called Venn diagrams are sometimes
used to give a purely symbolic, but convenient, geometric indication
of the relationships involved. Suppose, for the moment, that all sets
being considered are subsets of some fixed set U. In Figures 1 and 2,

U U

ANB AUB

Figure 1 Figure 2

the points within the square represent elements of U. If A and B are
subsets of U, then the elements of A and B may be represented by
the points within indicated circles (or any other closed regions). The
intersection and the union of the sets A and B are then represented
in an obvious way by the shaded regions in Figures 1 and 2,
respectively.

Of course, the use of a Venn diagram is not meant to imply
anything about the nature of the sets being considered, whether or
not indicated intersections are nonempty, and so on. Moreover, such
a diagram cannot in itself constitute a proof of any fact, but it may

be quite helpful in suggesting a proof.
Let us make the following remarks by way of emphasis. A

problem of frequent occurrence is that of proving the equality of two
sets. Suppose that C and D are given sets and it is required to prove
that C = D. By definition of equality of sets, we need to show that
C € D and D C C. Sometimes one or both of these conditions follow
easily from given facts. If not, the standard procedure is to start with
an arbitrary element of C and show that it is an element of D, and

Some Fundamental Concepts - Ch. 1
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then do the same thing with C and D interchanged. When we write
“let x € C” or “if x € C,” we mean that z is to represent a com-
pletely arbitrary element of the set C. Hence, to show that C € D,
we only need to show that “if x € C, then x € D.” Of course, any
other symbol could be used in place of x. Let us now give an example
by way of illustration.

Example. 1If A, B, and C are sets, prove that

AUBNC =AUBNMAUCQC).

Solution. First, let us take advantage of the opportunity to
give another illustration of a Venn diagram. If we think of the
meaning of A U (B N C) as consisting of all elements of A together
with all elements that are in both B and C, we see that the set
A U (B N C) may be represented by the shaded portion of the Venn

Figure 3

diagram in Figure 3. We leave it to the reader to verify that this same
shaded region also represents the set (4 \U B) N (A U C).

We now proceed to give a formal proof of the required for-
mula. Clearly, BN CC B, so AU (BN C)C A U B. Similarly,
BNCCC,and hence A U (BN C) C A U C. It follows that

AUBNC)C(AUB) NAUDO,
and we have obtained inclusion one way. To obtain inclusion the
other way, let « € (A U B) N (A U C) and let us show that
€ AUBNC).Nowae € AU Bandalsox € A UC.Ifx € A,
1.1 - Sets
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