G. R. Lindfield // J.E.T. Penny

Third Edition 4

- Numerical Methods

g
o

i
-

ot

i
ot

i
e

e
i

s
R

73,
.,

/1

in
*
s
e
"
¥

2
o
g

- T4
7

%
e
;.‘ 8
[~
il
n:‘
pl-

=
N
=

N
NS
-

e
-
S0

ALNRANR N33
A i - AN E
M = \
TC\'\“\\\\K\\ SN
A AN ISR
\ L it VI INAL I
DA L

L L e



Numerical Methods
Using MATLAB®
Third Edition

G.R. Lindfield
J.E.T. Penny

AMSTERDAM ¢ BOSTON ¢ HEIDELBERG ¢ LONDON
NEW YORK ¢ OXFORD * PARIS * SAN DIEGO
SAN FRANCISCO * SINGAPORE * SYDNEY ¢ TOKYO
Academic Press is an imprint of Elsevier



Academic Press is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451,USA
The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK

© 2012 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Details on how to seek permission, further information about
the Publisher’s permissions policies and our arrangements with organizations such as the Copyright
Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/
permissions.

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods, professional practices, or medical treatment
may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating
and using any information, methods, compounds, or experiments described herein. In using such
information or methods they should be mindful of their own safety and the safety of others, including
parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume
any liability for any injury and/or damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas
contained in the material herein.

MarLAB® is a trademark of The MathWorks, Inc., and is used with permission. The MathWorks does not
warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MaTL.AB®
software or related products does not constitute endorsement or sponsorship by The MathWorks of a
particular pedagogical approach or particular use of the Marias® software.

Mat1AB® and Handle Graphics® are registered trademarks of The MathWorks, Inc.

Library of Congress Cataloging-in-Publication Data
Lindfield, G.R. (George R.) Numerical methods using Marias® / G.R. Lindfield, J.E.T. Penny. — 3rd ed.
p.cm.
Penny’'s name appears first on the earlier edition.
Includes bibliographical references and index.
ISBN 978-0-12-386942-5 (pbk.)
1. Numerical analysis—Data processing. 2. MATLAB. L. Penny, J.LE.T. (John E.T.) II. Title.
QA297.P45 2012
518.0285'53-dc23 2012015199

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For information on all Academic Press publications
visit our website at http://store.elsevier.com

Printed in the United States of America
1213 14 1516 10987654321

Working together to grow
libraries in developing countries

www.clsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER  BOOKAID o, b Foundation

International



To our wives, Zena Lindfield and Wendy Penny, and our now adult children,
Helen and Katy, and Debra, Mark and Joanne, for their patience and sup-
port. Also to our various cats, who have walked over, and even slept on, the
computer keyboard!



Preface

The third edition of Numerical Methods Using MarLag® is an extensive development of
the first and second editions of this book. All MarLAB scripts and functions have been
checked and revised to ensure that they are executable in the current version of MATLAB,
version 7.13.

Our primary aim in this text is unchanged from previous editions; it is to introduce
the reader to a wide range of numerical algorithms, explain their fundamental principles,
and illustrate their application. The algorithms are implemented in the software package
MarLaB, which is constantly being enhanced and provides a powerful tool to help with
these studies.

Many important theoretical results are discussed, but it is not intended that a detailed
and rigorous theoretical development in every area be provided. Rather, we wish to show
how numerical procedures can be applied to solve problems from many fields of applica-
tion, and that the numerical procedures give the expected theoretical performance when
used to solve specific problems.

When used with care, MATLAB provides a natural and succinct way of describing numer-
ical algorithms and a powerful means of experimenting with them. However, no tool,
irrespective of its power, should be used carelessly or uncritically.

This text allows the reader to study numerical methods by encouraging systematic
experimentation with some of the many fascinating problems of numerical analysis.
Although MarLaB provides many useful functions, this text also introduces the reader to
numerous useful and important algorithms and develops MatLAB functions to implement
them. The reader is encouraged to use these functions to produce results in numerical and
graphical form. MatLAB provides powerful and varied graphics facilities to give a clearer
understanding of the nature of the results produced by the numerical procedures. Par-
ticular examples are given throughout the text to illustrate how numerical methods are
used to study problems, including applications in the biosciences, chaos, neural networks,
engineering, and science.

It should be noted that this introduction to MATLAB is relatively brief and is meant as
an aid to the reader. It can in no way be expected to replace the standard MarLAB manual
or textbooks devoted to MatLAB software. We provide a broad introduction to the topics,
develop algorithms in the form of MarLaB functions, and encourage the reader to exper-
iment with these functions, which have been kept as simple as possible for reasons of

xiii



xiv Preface

clarity. These functions can be improved, and we urge readers to develop those that are
of particular interest to them.

In addition to a general introduction to MaTtLaB, the text covers the solution of linear
equations and eigenvalue problems; methods for solving nonlinear equations; numerical
integration and differentiation; the solution of initial value and boundary value problems;
curve fitting, including splines, least squares, and Fourier analysis; and topics in opti-
mization such as interior point methods, nonlinear programming, and genetic algorithms.
Finally, we show how symbolic computing can be integrated with numerical algorithms.
Specifically in this third edition, in Chapter 1 we have added descriptions and given
examples of some functions recently added to MarLaB and have included a dicussion of
handle graphics with examples. Chapter 4 now includes a section on Lobatto’s method
for integration and the Kronrod extension. Chapter 8 has been extensively revised and
includes a description of the continuous genetic algorithm, Moller’s scaled conjugate
gradient method, and methods for solving constrained optimization problems.

The text contains many worked examples, practice problems (many of which are new
to this edition), and solutions. We hope we have provided an interesting range of problems.

The text is suitable for undergraduate and postgraduate students and for those work-
ing in industry and education. We hope readers will share our enthusiasm for this area
of study. For those who do not currently have access to MarLAB, this text provides a gen-
eral introduction to a wide range of numerical algorithms and many useful and interesting
examples and problems.

For readers of this book, additional materials, including all .m file scripts and func-
tions listed in the text, are available on the book’s companion site: wwuw.elsevierdirect
.com/9780123869425. For instructors using this book as a text for their courses, a solutions
manual is available by registering at the textbook site: wwuw.textbooks.elsevier.com.

We would like to thank the many readers from all over the world who provided helpful
comments, which have enhanced this edition. We also acknowledge the valuable assis-
tance given to us by our colleague, David Wilson, in guiding us in the restructuring of
Sections 7.5, 7.6, and 7.7.

We would be pleased to hear from readers who note errors or have suggestions for
improvements. Also, we would like to thank key Elsevier staff, including Patricia Osborn,
Acquisitions Editor; Kathryn Morrissey, Editorial Project Manager; Joe Hayton, Publisher;
Fiona Geraghty, Editorial Project Manager; Kristen Davis, Designer; and Marilyn Rash,
Project Manager.

George Lindfield and John Penny
Aston University
Birmingham
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An Introduction to MATLAB®

MarLas® is a software package produced by The MathWorks, Inc. (www.mathworks.com)
and is available on systems ranging from personal computers to supercomputers, includ-
ing parallel computing. In this chapter we aim to provide a useful introduction to MATLAB,
giving sufficient background for the numerical methods we consider. The reader is referred
to the MarLAB manual for a full description of the package.

1.1 The MATLAB Software Package

MarTLAB is probably the world’s most successful commercial numerical analyis software
package, and its name is derived from the term “matrix laboratory.” It provides an inter-
active development tool for scientific and engineering problems and more generally for
those areas where significant numeric computations have to be performed. The package
can be used to evaluate single statements directly or a list of statements called a script can
be prepared. Once named and saved, a script can be executed as an entity. The package
was originally based on software produced by the LINPACK and EISPACK projects but cur-
rently includes LAPACK and BLAS libraries which represent the current “state-of-the-art”
numerical software for matrix computations. MATLAB provides the user with

1. Easy manipulation of matrix structures

2. Avast number of powerful built-in routines that are constantly growing and
developing

3. Powerful two- and three-dimensional graphing facilities

4. A scripting system that allows users to develop and modify the software for their own
needs

5. Collections of functions, called toolboxes, that may be added to the facilities of the
core MaTtLAB. These are designed for specific applications, for example, neural
networks, optimization, digital signal processing, and higher-order spectral analysis.

It is not difficult to use MATLAB, although to use it with maximum efficiency for complex
tasks requires experience. Generally MATLAB works with rectangular or square arrays of data
(matrices), the elements of which may be real or complex. A scalar quantity is thus a matrix
containing a single element. This is an elegant and powerful notion but it can present
the user with an initial conceptual difficulty. A user schooled in such languages as C++
or Python is familiar with a pseudo-statement of the form A = B+ C and can immediately
interpret it as an instruction that A is assigned the sum of values of the numbers stored in
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