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PREFACE

In the past, many fields of Mechanics, including that of Mechanics of
Continuous Media, have developed more or less independently of Thermodynamics.
At present, however, a stage has been reached where further progress appears
impossible without the inclusion of thermodynamic concepts.

In these circumstances, the International Centre for Mechanical Sciences
(CISM) decided to present and discuss the results obtained in two course series
which were held in 1971 and 1972. In the first one emphasis was placed on the basic
concepts and their applications. In particular, the classical approach to thermo-
dynamics of irreversible processes as well as the modern relevant concepts were
presented and discussed. In the second series, the developments of the theory of
thermal stresses were reviewed and its applications in the field of mechanical, air and
spacecraft engineering were surveyed. Besides, attention was focussed on coupled
thermoelasticity developed as a synthesis of the theory of elasticity and the theory
of thermal conduction. Basic research problems, dispersion of elastic waves,
dissipation of energy, etc. were dealt with. Stationary and non-stationary problems,
both in the frame of a linear approach and for finite deformations, were analyzed.
The lectures were also devoted to thermal disturbances in bodies of various physical
response, to thermal effects in piezoelectric media, to the fundamentals of
magneto-thermoelasticity and to problems of thermodiffusion in solids.

These course series turned out to be a real success, and also stimulated,
creative activities in various research centres. As a consequence, the participants
suggested to meet again in about two or three years in order to get acquainted with
the new trends of development of thermomechanics.

As a result, a Symposium on “Thermoelasticity’ has been held at the
CISM in Udine during its Rankine Session, from July 22 to 25, 1974. It has been
organized with the aim to survey the steadily growing achievements in this area as
well as to discuss questions of further progress.

In order to initiate the discussion, four general reports have been invited.
These reports are contained in the present volume. They were scheduled to be read
at four consecutive days whereupon the original contributions and papers in the
corresponding special fields were delivered. These (fifteen) contributions have
subsequently been published in various Journals.

In the first part of this volume Professor I.N. Sneddon presents and
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discusses the coupled problems of linear thermoelasticity whilst its generalizatt’ons
and developments in the field of anisotropic elastic media are dealt with, in the
second part, by Professor W. Nowacki.

Since in recent years there has been a rapid development in the
phenomenological theory of coupled electromagnetic and deformation fields,
Professor H. Parkus extends this work to include thermo-magneto-elastic
interactions.

Finally, professor C. Wozniak presents a new area of development, the
thermoelasticity of nonlinear discrete and continuum constrained systems.

During the Symposium considerable time was devoted to informal
discussions, and the Symposium was concluded by a round-table discussion in which
the main features of progress in Thermomechanics of Solids have been critically
reviewed and treated. The participants agreed on the need of further meetings of a
similar kind. '

W. Nowacki

%ﬂ. /] otyzctt /b 24t —

Udine, December 1977.
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1 Introduction

The purpose of this introductory lecture is to present a brief account of
the linear theory of thermoelasticity starting with a discussion of the basic equations
of (non-linear) thermoelasticity and deriving the coupled equations of linear
thermoelasticity from them. The treatment leans heavily on the articles [1] and
[2].

This is followed by a discussion of the mixed problem of the dynamical
theory of linear thermoelasticity and of the variational principles which may be used
to derive solutions in special cases.

The next two sections are concerned, respectively, with the propagation
of harmonic plane waves in a homogeneous isotropic elastic solid and with a
description of some special solutions of the coupled equations.

The survey ends with some remarks on problems with finite wave speed in
the heat conduction equation.

2. The basic equations of thermoelasticity

The elastic body B is identified with the bounded regular region of space
it occupies in a fixed reference configuration® . The displacement at time t of the
point x € B is denoted by u (x,t). We shall suppose that & belongs to the finite time
interval (0,t,) and we shall write

Q=3B x (0,tg), £ =B x[0,t0],

where B denotes the closure of B . By a motion of the body we mean a vector field
u € C(f2) and by the deformation gradient the spatial gradient F of the mapping
which takes the point x to x+u(x,t) , i.e.

(2.1) F=1+mw (2.1)

where 1 denotes the unit tensor and Vu the gradient of u. It is assumed that the
motions under consideration are such that the mapping x| x+u (x,t) is
injective on B and has a smooth inverse so that det F # 0.

If we denote the Piola-Kirchhoff stress tensor (measured per unit surface
area in the reference configuration) by S (x,t) and the body force (measured per
unit volume in € ) by f (x,t)the laws of balance of forces and moments lead to the

equations
(2.2) div S + f =0, (2.2)
(2.3) SF = Fs”, (2.3)
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where FT denotes the transpose of the tensor F.

If we denote the internal energy (per unit volume in € ) by e(x,t), the
heat flux vector by q(x,t) and the heat supply, per unit volume in € , by r (x,t)
and if we assume that e€ €*' (), qe c® () ,re c () then the local form of
the first law of thermodynamics is expressed by the equation

(2.4) & =S.F-divq+ r.

Similarly, ifn(x, t)ec®(Q) is the entropy,0 (x,t)eC L0 (Q) is the absolute
temperature with @ (x,t)> 0, the local form of the second law of thermodynamics
is expressed by the inequality =~

(2.5) n = - div(q/0) + /6

If we introduce the free energy ¥ = e — n0 and the temperature gradient g = v
we can write this last inequality in the alternative form

(2.6) U+nb -S.F+ (g .q) /0 <0

the inequality (2.6) is called the local dissipation inequality..

So far we have made no assumptions concerning the nature of the material
forming the body B . Now we assume that the material is elastic, that is, that there
exist four constitutive equations which define ¥,.S, 7 and q as smooth functions
of the set of all (F,80,g ,x) for which div F# 0 and@ > 0 . Certain restrictions are
imposed on these constitutive equations by the local dissipation inequality, that is,
by the second law of thermodynamics. (See, e.g. [2]1,[4),[5]). It turns out
that ¥ ,S and 7 ‘are independent of the temperature gradient g and that q satisfies
the relation

(2.7) ] (g.9) <oO.

This last inequality is called the heat conduction inequality.

Further, if, for convenience, we omit the variable x and write
(2.8) s = §(F,0), V= WF,0), n=n(F,0,
we find that S and 7 can be calculated from @ by means ofkthe
(2.9) S(F,0) = 3 U(F,6), n(F,0) = - 3 V(F,0).
The tirst of these equations is called the stress relation, the second is called the

entropy relation and the equation

© (2.10) 3, S(F,0) = - a.n(F,0)
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found by eliminating ¥ between them is called Maxwell’s relation.

From the definition of the free energy ¥ we deduce immediately that the
internal energy obeys a constitutive relation e = €(F.0) where the function e is
defined by the equation

e(F,0) = Y(F,0) + On(F,0). (2.11)
Defining the specific heat ¢ (F,0) of the material through the equation
c(F,0) =9 e(F,0) (2.12)
we deduce immediately from equations (2.11) and (2.9), that
c(F,0) = 60 n(F,0) (2.13)
We shall confine our attention to materials for which the specific heat is
strictly positive, and since, by hypothesis, 8 > 0 we deduce immediately from
equations (2.12) and (2.13) that the functionﬁ(F,G)has a smooth inverse in 6 for

each choice of F, ie. that we may write 6 = 0( F,n) and hence that we may write
the consititutive equations in the alternative forms

e=co(Fm, S=8Fn, 06=0Fn, q=qFn (2.14)
The relations (2.9) then imply the pair of equations
S(F,n) =3 e(F,m), 6(F,n) =3 e(F,m) (2.15)
Further conditions on the constitutive equations of an elastic material are
obtained by applying the principle of material frame indifference (sects. 17-19A of
[61) which states that the constitutive equations are independent of the observer.
For this to be so the consititutive equations must have the reduced forms
Y = J}(Dse) s S = I:Sm(l)se) » N = T?(D,G) » 9= Q(D,e,g) (216)
where
1 T
D=3 (FF-1) (2.17)

is the finite strain tensor, and ¥, S and n satisfy the equations

S(D,0) = 3_¥(D,0), n(D,0) = -3 YD, (2.18)

The heat conduction inequality (2.7) also has important consequences. If
we define the conductivity tensor K(D,0) by the equation
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(2.19) K(D,0) = - 3 q(D,0,0)

then as a consequence of (2.7) we have that K(D,0 ) is positive semi-definite, and
that

(2200 q(D,6,0) =0 , 3 q(D,0,0) =0, 3,q(D,6,0) =0

3. The linear theory of thermoelasticity
We now consider the linear approxination to the system of equations of
thermoelasticity consequent upon the following assumptions:-
(a) the displacement gradient Vu and its time rate of change Vit are
both small;
(b) the temperature field differs only slightly from a prescribed, uniform
tem perature field 8o , called the reference temperature; i.e.
|8/8, 1<1 where ¥ = 8 -0, ;
(c) the time rate of change of the temperature,é , and the temperature
gradient g are small.
If |vu| <3&,, then it is easily that D = E+ 0 (8%) as 8, 0, whereE
is the infinitesimal strain tensor defined by the equation

(3.1) E=32 (Vu+ W',

and similarly if |Va] <8, ,D=E + 0 (8;) as 8, 0 . Also, if [9/00] < 8
and 8 =max(8;,63)we find that

(3.2) | $(D,0) = CLE] + (8 -0,)M+ 0(8), -0
where C and M are defined by the equations

(3.3 | C = 3,8(0,80) = 329(0,60),

(3.4) M= 9,5(0,60) = 3,0p¥(0,00),

respectively; the fourth order tensor C is called the elasticity tensor and the second
order symmetric tensor M is called the stress temperature tensor. It should also be
noted that, for any pair of symmetric tensors G and H

(3.5) G.C[H]=H.C[G];
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in component form this is equivalent to the symmetry condition
Geoj = G - (3.6)
In a similar way we obtain the approximation
q=-Kg (3.7)
where
K= -29,q(0,0,,0) (3.8)

is the conductivity tensor. It should be emphasized that there is no reason to believe

that, in general, K will be a symmetric tensor; it is always positive semi-definite.
Denoting the density by p(x) and the non-inertial body force by k so

that f =b - pii we see that equation (2.2) becomes
div 8§ + b = pii
Finally, if we introduce the scalar
c = 0065‘;}(0 s00)
— the specific heat corresponding to D = 0and 6 = 0, - we obtain
—divq+00Mf§+r=cé
as the linearized form of the energy equation (2.5). -

Collecting these equations together we have :—

The basic equations of the linear theory of thermoelasticity: —

)

T
E=-;—(Vu+Vu),
divS +b = pi,

-div q + 00M.I'§+ r = ch

w2
]

C[E]+ (8 -0,)M

- Kvé

Ke]
]

(3.9)

(3.10)

(3.11)

(3.12)
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4. The linear theory in the isotropic case
The form of the tensors C,M and Kare particularly simple in the isotropic
case. (See Sect. 21, 22 and 26 of [1] and [7]). We have

C[E] = 2uE + A (trE)1
(4.1) M= ml
K = kil

where A and u are the Lamé constants, k is the conductivity and, in terms of «,
the coefficients of thermal expansion

(4.2) m=- 3\ + 2a.
We therefore have

The basic equations of linear thermoelasticity for an isotropic body :—

E

> u o+ wh),
divS +b = pi
(4.3) -div q + nﬁ)otri‘: +r = cé,

2wE + {A(trE) + mo}1

7]
(]

. q = - kvf

The first two and the last two equations of this system were first derived
by Duhamel [ 8] and later by Neumann [9] .
In both cases the strain-rate term

m, trii

did not appear in the third equation of the set representing the energy balance. There
were attempts, at a later date, to justify the inclusion of such a term on the basis of
reversible thermodynamics by Voight [10], Jeffreys [11 Jand Lessen and Duke [12],
and on the basis of irreversible thermodynamics by Biot [13]. The derivation out-
lined here is that given in Sect. 3-8 of [ 2 ]; a similar treatment based on modern con--
tinuum mechanics and thermodynamics is given in Chap. 8 of Eringen’s book [14].
In many applications of the theory two additional assumptions are often
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made to facilitate the solution of boundary value problems. The first of these —
which leads to the uncoupled theory — is to assume that in the energy balance
equation the term fotrE may be neglected so that the temperature field is
determined by the pair of equations

-divg + r = cf, q = - kvf.

Once the temperature field has been calculated the stress and displacement fields can
then be found by use of the first, second and fourth equations of the system (4.3).
The second simplifying assumption — which leads to the quasi-static theory — is that
the inertia term pu in the second equation of the system (4.3) may be neglected
but that the equations are otherwise unaltered. Indeed, in many engineering
applications, in which the geometry is complicated, both approximations are made
simultaneously. Such approximate solutions are discussed in the books by Melan and
Parkus [15], Boley and Weiner [16], Nowacki[ 17] and Kovalenko [18].

Here, we shall continue with the discussion of properties of the full set of
coupled equations.

If we eliminate S and E from the first, second and fourth of these
equations we obtain the equations of motion '

pAu + (A + p)V diva + mvd + b = pii, (4.4)

while if we eliminate q and E from the first, third and fifth equations of the set we
obtain the coupled heat equation '

kA9 + mf,diva + r = cd (4.5)

Applying the operator div to both sides of equation (4.4), and the operator curl to
both sides of equation (4.5) we obtain the inhomogeneous wave equations

O,divu = - p ' (mAd + div b), - (4.6)

Ocurl u = - p lcurl b, (4.7)
in which the operators O, , O3 are defined by the equations

Og f = 5 Af - £, (x=1,2) (4.8)
with

i = (A+2wW/p . c =ulp (4.9)

so that ¢, and c, are respectively the velocities of the P= and the S= waves in



