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Preface

Description. Suitable for freshman or sophomore students, this introduction
to linear algebra begins with a discussion of concrete vector spaces after which
systems of linear equations are encountered. Vector-space notions are im-
mediately applied in presenting a theory of linear programming in the plane.
We then proceed to linear transformations and their matrices, followed by a
deeper study of linear equations. Next, determinants are studied from both a
classical and nonclassical approach. The final chapter deals with the structure
of operators and introduces ideas of inner product, diagonalization, and the
spectral decomposition theorems for self-adjoint operators and Hermitian
matrices. Each chapter contains examples, exercises, and a summary of the
material discussed.

A complete chart of all theorems and definitions of the book is followed by a
self-contained appendix on mathematical induction and an appendix on
complex numbers.

Features. We are guided by two general principles: First, new ideas should be
offered in a concrete (or particular) setting and should then evolve into the more
abstract (or general) situation. Second, sufficient space should be given to
establishing motivation and anticipating the student’s questions. (Why is this
definition necessary? Where did it come from? Why is this theorem given in
this form?)

Consistent with these general aims, the following particular features are
incorporated in this text:

e Concrete n-vectors are introduced at the outset and vector-space notions are
immediately used to develop a theory of linear programming in the plane.
As the first chapter unfolds, we are systematically led to the definition of an
abstract vector space.

e Systems of simultaneous linear equations are briefly explored in Chapter I
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viii Preface

where the technique of Gaussian Elimination is described. The justification
of this technique, along with a deeper study of linear systems, appears later
in Chapter I11.

e FEach chapter contains an abundance of exercises and illustrative examples.

e By use of the notation ma(T),, for the matrix of a linear transformation T,
we have tried to underscore the fact that the matrix depends on the three
entities which are: the linear transformation T, the ordered basis 2 of the
domain space, and the ordered basis % of the range space. Many examples
and exercises dwell on this dependence, as well.

e Matrices are discussed for the 2 x 2 case first. This special case may be
omitted, if desired, in favor of the general m X n case which follows.

e Determinants are presented in two ways. First, in Chapter IV, we have the
classical development depending on properties of permutation functions.
Alternately, Chapter V offers the nonclassical multilinear viewpoint which
does not require permutations.

e The spectral theorem for self-adjoint operators and hermitian matrices is
not presented as a dead-end finale. This important decomposition finds
extensive use at the end of Chapter VI.

e Important computational techniques of the text are immediately retrievable
via the unique ‘““computations’ entry in the index. For example, five
references are given for techniques of finding the inverse of a matrix under
the “ matrix inverse ”” subheading of the * Computations” entry.

e For easy location of theorems and definitions, we use a consecutive triple
entry numbering system which appears in the running head of every page.
As an example, item (theorem or definition) I1.3.9 appears in Chapter I1,
Section 3, and is the ninth item of that section.

o Each chapter concludes with a summary.

e A bird’s-eye view of the entire text appears for the student’s convenience
in the form of a chart of all theorems and definitions (following Chapter V1).

Acknowledgments. Most importantly, it was my wife Susie who encouraged
me in the writing of this book. I am grateful for the helpful comments and
suggestions of Professors R. M. Thrall and J. Murtha, who read the entire
manuscript in raw form. Also, much credit is due Mrs. Ollie Cullers, Mrs. Jane
Scully, and Mrs. Sharon Unangst, who translated scribbled notes into a polished
typed form. For the use of their facilities, I wish to thank the University
of California at Riverside, and Brookhaven National Laboratory, Upton,
New York.

Riverside, California JoHN DE PrILLIs
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Introduction

The purpose of this introduction is to set down the language of set
theory. The definitions presented are somewhat inexact in that the un-
defined terms are not explicitly cited. The reason for this omission is that a
rigorous development of the theory of sets would require techniques that
are quite advanced. However, it is hoped that the concepts will sit well
with the readers’ intuition.

Definition 1 A set will denote a collection (family, aggregate) of dis-
tinguishable objects, which will be called elements or members of the set.

Notation 2 If A represents a set, and « represents one of its elements
(members), then we use the notation

ze A, read “a belongs to the set 4,”

or “z is an element of 4,” or “x is a member of 4.” Not too surprisingly,
then, we use the notation « ¢ A to stand for the negative of the previous
statement(s), that is, ““z is not an element of 4,”” and so forth.

Notation 3 Suppose the symbols x1, xs,. .., Zs,... represent a ‘listing
of the elements of a set A. (Here, the dots ... are to stand for the phrase
““and so on” which indicates that we really know what all the elements of
A are (somehow), but use this shorthand as a convenience). In this case,
we could simply write

A ={x1,22,.. ., 2n,...}

Example 1 Let A be the 4-element set of letters y, a, r, g. That is (Notation 3),
A = {y,a,r,g}. Alternatively, 4 = {g,r,a.y} or A = {r,a,y,g}. If you like to think of A
as the word ““ yarg,” then you are artificially imposing an ordering on the elements of
A. Heretofore, we have mentioned nothing of ordered sets, although they will prove
useful to us later.

Example 2 Let A represent the 3-element set whose elements are {y,a,7,g}, {p,o,t},
and {n,u.ts}. Notice that the elements are themselves sets. Thus, A = {{y.a,r,g},
{p,o,t}, {nut,s}}. According to Notation 2, we make the statement,

{p.otte A,
or

{p’o’t} € {{yya’hg}7 {pﬁo’t}’ {n3u’t’s}}'
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Now, each letter is not an element of 4. That is,

pEA;

rather, p € {p,0,t}, and the set {p,0,t} is an element of A.

EXERCISES

1 Let A be the set whose elements are the integers from 3 to 7 inclusive.
(a) Is it true that 4e€ 4 ?
(b) TIs it true that {3,4} e 4 ?
(c) Is it true that 2 e A4?

2 Let A be the following set of words (here, a word is to be interpreted as an ordered
set in itself, for example {c¢,a,t} is a word, but is not the same word as {¢,a,c} since
the orderings of the letters differ):

A= {{e,a.t}, {t’a”c}r {f’r’O!g}r {g»avrvf}}-

Which of the following statements is true? Explain.
(a) {f,r,o,g} ed
(b) fe{frog}

(c) fed
(d) {f,T,O,g,a,T,f} eAd
(e) {ta}eA.

Definition 4 Let A and B be sets. Then the symbols 4 = B (equiva-
lently, B © A), read A4 is contained in B, B contains A or A4 is a subset of B,
is to mean that each and every element of 4 is also an element of B.
That is to say, A < B means:

whenever x e A, then x¢€ B.

Example 3 Let 4 = {1,234} and B = {1,3}. We assert that B < 4, since (as
Definition 4 requires), every element of B is also an element of A. The elements of
B are exactly the integers 1 and 3 and surely, 1 € {1,2,3,4} and 3 € {1,2,3,4} = 4.

With the notion of inclusion (Definition 4) in hand, we are able to say precisely
what is meant in saying that one set 4 is ““equal to”’ another set B. Informally, we
shall write A = B whenever elements of 4 are always elements of B, and vice versa.
Formally, we have Definition 5.

Definition 5 Let A and B be sets. The symbol 4 = B, read 4 equals B or
B equals A4, is to mean that A < Band B < 4.

Example 4 Let A be the set of all even integers, that is, integers which are of the
form 2 - ¢ where ¢ is an arbitrary integer. We construct the set B as follows: Select
the integer 0. Then leave the adjacent integers alone (in this case leave 1 and —1
“next” integers (in this case, select 2 and —2). Repeat this
integer. The set of all selected integers

alone) and select the
selection process of selecting ‘‘every other
(elements) will be our set B.

’
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' ¥ 1 i R
® «- ®© « 6 -« OO -+ O -
-4 -3 -2 -1 0 1 2 3 4 5
A = Allintegers 2 q B = Every “other” integer, O ¢ B
(a) (b)
Figure 1

Note that we’ve described elements of 2 (apparently different) sets 4 and B.
Certainly, these descriptions are not the same, for elements of 4 were selected by
their algebraic properties, namely, divisibility by 2, while elements of B were selected
by their geometric arrangement on a line, namely, the arrangement dictated by their
order (see Figure 1). However, every integer (in A) of the form 2 - g, g an integer, is an
integer in B, that is, * € 4 implies x € B, or 4 < B. Every integer of B is also of the
form 2 - g for some integer ¢, that is, x € B implies x € A, or B < 4. That is, 4 = B.

Definition 6 The empty set (void set, null set), symbolized by the letter
&, is the set that has no elements.

Note that Definition 4 concerned itself with a certain relationship
(inclusion) between pairs of sets. In what follows, we will define 2 opera-
tions on pairs of sets (union and intersection) that will allow us to generate
a third set.

Definition 7 Suppose 4 and B are sets. The (third) set, 4 union B,
symbolized 4 u B, is the set of elements that belong either to 4 or to B
(or possibly to both 4 and B). In other words an element qualifies as a
member of 4 U B if and only if that element is already an element of (at
least) one (but not necessarily both) of the sets, 4 or B. Thus,

xeAU B ifandonlyif xed or xze€B.

Example 5 Let 4 = {4.a.D} and B = {a,b.c}. Then A U B = {4,a,D,b,c}. Note that
a € A and a € B, but it is not ‘“ counted twice’ in A U B. The element a meets the
test of Definition 7 in that it is an element of at least one of the sets, 4 or B, and
that’s all we need to know.

Example 6 Let A= {1,234}, and B = {a,b,c}. Then 4 U B = {1,2,3,4,a,b,c}.

Definition 8 Suppose A and B are sets. The (third) set, 4 intersect B,
symbolized 4 n B, is the set of elements that belong to both 4 and B
(at the same time). Thus,

xeANB ifandonlyif ze A and xzeB.
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Example 7 Let 4 and B be as in Example 5. Looking for the elements which are
common to both sets, we are able to unearth only the element a. Thus, 4 n B = {a}.

Example 8 Let 4 and B be as in Example 6. There are absolutely no elements
common to both 4 and B in this case. Thus 4 N B = (&, the set with no elements
(Definition 6).

Sets of the form {3,chair, #} are not frequent, and, indeed, may raise
the question, “Is any and every object eligible to be a member of a set?
Were we to answer in the affirmative, we would soon arrive at some un-
happy paradoxes. For example, admitting ““ too many *’ sets leads to such
puzzles as deciding whether the following sentence is true or false:

“This sentence is false.”

If the sentence is true, then we are obliged to believe its statement,
namely, it is a false sentence. If, on the other hand, we decide to judge the
sentence as false, then we must believe the opposite of its message,
namely, that the sentence is not false. Such a dilemma might impel one to
abandon mathematics altogether, but a judicious limiting of eligible sets
does put our house in order. It is for this reason that we prescribe all of our
“eligible”” elements in advance. The set of elements under consideration
will be called the universal set (universe) and is denoted U. For example, U
may stand for all integers. We then are permitted to speak only of subsets
whose elements are integers.

Example 9 Let U = {—2,—1,0,1,2}. In this context, now, the set {1,5} has no
meaning, since the element 5 is not drawn from our universe U.

Definition 9 Suppose A4 is a set. The set 4 complement or complement
of A (symbolized ~A), is exactly the set of elements which are in U, but
not in A. Thus, x € ~4 if and only if x € U and x ¢ 4.

Example 10 Let U = {s,u,v,w,3,4}, and let 4 = {u,v,3}. Then ~ A4 = {s,w,4}, the set
of elements of U, which are not in 4.

The so-called “Venn diagram” is a useful device for illustrating the
previously defined operations and set relations. The idea of a Venn dia-
gram is to present a set by a certain set of points in the plane (a 2-dimen-
sional “‘surface”’). Observations (however obvious) from Venn diagrams
do not prove anything about general sets. For one thing, not every set is,
in fact, a subset of the plane, and secondly, all proofs must flow from the
explicit use of the definitions.

We present examples of Venn diagrams in Figure 2. The shaded regions
represent the sets indicated under the set U. Notice that in (b) and (d)
the set B is the set of points (in U) which are outside the rectangle.
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B
v
4 N
(a) AUB (b) AUB (c)ANB
B
~A
A

(d)ans (e)

Figure 2

EXERCISES

Verify the following statements (Exercises 3 through 13) for sets 4, B, and C in

the universe U. Use the definitions and illustrate with a Venn diagram.

3

U-J-- T I N B

10
11
12
13
14

Ac A

AuvuAd=A4

AnA=A4

Ang=g

Avd=0O

g A
AnNn(Bul)=AnBuldn0)
Au(BnC)=(4uB)n(4uB)

~(~A)=A
~F=U
~U=g

Let U ={1,2,3,4,5,6}, 4= {1,3,56}, B={2}, and C = {1,2,3}. Describe the
following sets:

(a) ~A, ~B, ~C.

(by AnB,An ~B, ~(~A U B)
() AnC,An ~C, ~(~A0UC)
(dy AuB,Au ~B, ~(4AnN B)
() Au ~B, ~(~A N B)

) (AnBAC

(g An(BnC)

(h)y An~B)yn ~C

(i) An(BuC)

() AnB)udn()
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15 Show by example, that for certain sets A and B, it is not always true that
~AuUB)=~AuU ~B.
Show that, however,
~(Au B)=~A4 N ~B isalways true.
16 Show by example, that for certain sets A and B, it is not always true that
~AnNnB)=~AnN ~B.
Show that, however,
~(A N B)=~A U ~B 1salways true.
17 Prove that, for any sets 4 and B,
(AnB)cB and (AnB)cAd
18 Prove that, for any sets 4 and B,
A< (AuB) and Bc< (4 v B).



CHAPTER I

Vector Spaces and Applications

1. Addition and Scalar Multiplication of Vectors

Definition I.1.1 A concrete column vector is an ordered set of » numbers
(or scalars)

1
Z2

Xn

written in vertical fashion, where n is some positive integer. A concrete
row vector is an ordered set of numbers (z1,2s,. . .,2,) written in horizontal
fashion. In both cases, the numbers x1, x9,. .., x,, are called coordinates,
entries, or components, of the respective vectors.

The set of all column vectors is denoted by the symbol V,. V, is also
denoted by Va(R) or V,(C) according to whether the entries are elements
of the real numbers R, or complex numbers C, respectively.

Example L1

3
0 (_:;’) _(1) , (1,3,0,2), (1,1), (0,3,—%).
1

The first 3 vectors are column vectors (in V3) with 3, 2, and 4 components (co-
ordinates), respectively. The last 3 vectors are row vectors with 4, 2, and 3 compo-
nents, respectively.

Example 1.2 For each family on the block, we may construct a column (or row)
vector with 3 coordinates. Let the first coordinate represent the pennies spent each
week on milk, the second coordinate represent the weekly expenditure for garlic,
and the third coordinate agree with the weekly expenditure for mouthwash. Thus,
if there are only 2 families on the block, family 4 and family B, we might represent
their weekly expenditures:

250 125\ < milk
XA = 10 XB = 40 <—garlic
60 730/ < mouthwash.

Suppose we raise the question: How much money is spent by the families on the
block in a week? It seems clear that to find the combined weekly expenditure profile,

7



8 Vector Spaces and Applications 1.1.2

we add componentwise, that is, if expenses of family 4 = X4, expenses of family
B = X, then

250 125 2504 125 375\ <milk
XaplusXp=| 10)plus| 40)=| 104 40])=| 50| < garlic (L.1.1)
60 730 60 + 730 790/ <-mouthwash.

Actually, Equation (I.1.1) sets the pattern for the notion of addition of one vector
to another. We set down a formal definition of vector addition with

Definition I.1.2 Suppose X and Y are column vectors, each with n
coordinates. Then the sum of X and Y, X 4 Y, is defined by

X1 Y1 x1 + Y1
T2 Y2 x2 -+ Y2
X4+Y=|.|+£! . |I=l".

Xy Yn Tn 1T Yn

Similarly, if X and Y are cach row vectors with »n coordinates, then X
plus Y, X 4 Y, is defined by

(x1,@2,. . o, @n) + W1.Y2,- - . Yn) = (@1 +Y1,22 +Y2,. . .. Zn + Yn).

REMARK. The sum of a pair of concrete vectors is meaningful only when
both vectors have the same number of components (coordinates). More-
over, we observe that the sum of 2 vectors, each having n components,
yields a vector of the same type, that is, one with n components, Also, we
have used the symbol + to underscore the fact that we are adding some-
thing other than numbers; addition of numbers is denoted by the usual
symbol +. The following example will motivate our definition of what is
meant by the multiplication of a vector by a number.

Example 1.3 Supposc we construct a “ happiness profile ”” for a certain child over a
year’s time which lists the following: (1) The number of pounds of popcorn received,
and (2) the number of hours spent juggling oranges. If, in the year 1878, our child
received 21 pounds of popcorn, and spent 48 hours juggling oranges, then his
happiness profile would be represented by the column vector

Y 21\ < pounds of popcorn received during 1878
“* 7 1 48) < hours juggling oranges in 1878.

Now if, in the following year of 1879, we desired to ‘‘increase the happiness ™ of the
child 2} times, we could reasonably expect to achieve this goal by multiplying each
component of the happiness profile vector, X, by the number 24. That is,

o1t 21\ (23-21\ (524
2 es g ) = 1oy -48) = \120)°

which tells us that in the year 1879, this child will have been 2} times as happy as
he was the previous year, after receiving a total of 52} pounds of popcorn, and after



