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Preface

The purpose of this book is to supply a collection of problems in group
theory, Lie group theory and Lie algebras. Furthermore, chapter 4 contains
applications of these topics. Each chapter contains 100 completely solved
problems. Chapters 1, 2 and 3 give a short but comprehensive introduction
to the topics providing all the relevant definitions and concepts. Chapters
1, 2 and 3 also contain two solved programming problems and eight supple-
mentary problems. Chapter 4 contains 10 solved programming problems
and 10 supplementary problems. Chapter 4 covers mainly applications in
mathematical and theoretical physics as well as quantum mechanics, dif-
ferential geometry and relativity. Problems cover beginner, advanced and
research topics. The problems are self-contained.

Accompanying problem books for this book are:
Problems and Solutions in Introductory and Advanced Matrix Calculus

by Willi-Hans Steeb

World Scientific Publishing, Singapore 2006

ISBN 981 256 916 2
http://www.worldscibooks.com/mathematics/6202.html

Problems and Solutions in Quantum Computing and Quantum Informa-
tion, third edition

by Willi-Hans Steeb and Yorick Hardy

World Scientific, Singapore, 2006

ISBN 981-256-916-2
http://www.worldscibooks.com/physics/6077.html

The International School for Scientific Computing (ISSC) provides certifi-
cate courses for this subject. Please contact the author if you want to do
this course or other courses of the ISSC.

e-mail addresses of the authors:

steebwilli@gmail.com
yorickhardy@gmail.com

Home page of the authors:

http://issc.uj.ac.za



Notation

is defined as

€ belongs to (a set)

¢ does not belong to (a set)

TCS subset T" of set S

sSNT the intersection of the sets S and T'
SuT the union of the sets S and T

0 empty set

N set of natural numbers
Z set of integers

Q set of rational numbers
R set of real numbers

R

C

+ set of nonnegative real numbers
set of complex numbers
R"™ n-dimensional Euclidean space
space of column vectors with n real components
cn n-dimensional complex linear space
space of column vectors with n complex components
H Hilbert space
i V-1
Rz real part of the complex number 2
[z imaginary part of the complex number 2
|2 modulus of the complex number 2z
|z +iy| = (2 +9°)'/%, 2,y €R
f(S) image of the set S under the mapping f
fog composition of two mappings (f o g)(z) = f(g(z))
G group
Z(G) center of the group G
Zom, cyclic group {0,1,...,n — 1}
under addition modulo n
G/N factor group
D, nth dihedral group
Sn symmetric group on n letters, permutation group
A, alternating group on n letters, alternating group
L Lie algebra

x column vector in the vector space C™
xT transpose of x (row vector)
0 zero (column) vector

-1l norm



O
AB

[A,B] := AB— BA
[A,B], :== AB+ BA
A® B

A®B
d;

>N N >

scalar product (inner product) in C™
vector product in R3

two sphere

m X n matrices

determinant of a square matrix A

trace of a square matrix A

rank of a matrix A

transpose of the matrix A

conjugate of the matrix A

conjugate transpose of matrix A
conjugate transpose of matrix A
(notation used in physics)

inverse of the square matrix A (if it exists)
n X n unit matrix

unit operator

n X n zero matrix

matrix product of an m x n matrix A
and an n X p matrix B

commutator of square matrices A and B
anticommutator of square matrices A and B
Kronecker product of matrices A and B
Direct sum of matrices A and B
Kronecker delta with 6;, =1 for j =k
and 0, =0 for j #k

eigenvalue

real parameter

time variable

Hamilton operator

Number operator

metric tensor field

real parameter

exterior product

exterior derivative

The Pauli spin matrices are used extensively in the book. They are given

by

01
92 =11 0

) w23 = )

In some cases we will also use o1, o2 and o3 to denote o, 0, and o, .
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Chapter 1

Groups

A group G is a set of objects {a,b,c,...} (not necessarily countable) to-
gether with a binary operation which associates with any ordered pair of
elements a,b in G a third element ab in G (closure). The binary operation
(called group multiplication) is subject to the following requirements:

1) There exists an element e in G called the identity element (also called

neutral element) such that eg =ge =g for all g € G.

2) For every g € G there exists an inverse element g~! in G such that
-1 _ —1,_

99 =9 g=e

3) Associative law. The identity (ab)c = a(bc) is satisfied for all a,b,c € G.

If ab = ba for all a,b € G we call the group commutative.

If G has a finite number of elements it has finite order n(G), where n(G) is
the number of elements. Otherwise, G has infinite order. Lagrange theorem
tells us that the order of a subgroup of a finite group is a divisor of the

order of the group.

If H is a subset of the group G closed under the group operation of G, and
if H is itself a group under the induced operation, then H is a subgroup of G.

Let G be a group and S a subgroup. If for all g € G, the right coset
Sg:={sg:5€85}

1



2 Problems and Solutions

is equal to the left coset
9gS:={gs:s€S}

then we say that the subgroup S is a normal or invariant subgroup of G.
A subgroup H of a group G is called a normal subgroup if gH = Hg for all
g € G. This is denoted by H <1 G. We also define

gHg ':={ghg™' : he H}.

The center Z(G) of a group G is defined as the set of elements z € G which
commute with all elements of the group, i.e.

Z(G):={z€G :zg=gzforallge G}.

Let G be a group. For any subset X of G, we define its centralizer C(X)
to be
CX)={yeG  :zy=yr forall z€ X }.

If X CY, then C(Y) C C(X).

A cyclic group G is a group containing an element g with the property that
every other element of G can be written as a power of g, i.e. such that for
all h € G, for some n € Z, h = g". We then say that G is the cyclic group
generated by g.

Let (Gy,*) and (G2,0) be groups. A function f : G; — G2 with
f(a*b) = f(a) o f(b), for all a,b € G,
is called a homomorphism. If f is invertible, then f is an isomorphism.

Groups have matrix representations with invertible n x n matrices and ma-
trix multiplication as group multiplication. The identity element is the
identity matrix. The inverse element is the inverse matrix. An important
subgroup is the set of unitary matrices U, where U* = U~1.

Let GL(n,F) be the group of invertible n x n matrices with entries in the
field IF, where F is R or C. Let G be a group. A matriz representation of
G over the field F is a homomorphism p from G to GL(n,F). The degree
of p is the integer n. Let p : G — GL(n,F). Then p is a representation if
and only if

p(g o h) = p(g)p(h)

for all g,h € G.



Groups 3

Problem 1. Let z,y € R. Does the composition

oy := /x3+1y3

define a group?

Solution 1. Yes. We have {/z3 + y3 € R. The neutral element is 0. The
inverse element of x is —z. The associative law

(woy)ez= (Vo +97) ez =V (VT +50) + 22
— B rP 1 B = ot + (VP + )

—ze(yez)

also holds. The group is commutative since z ey = y e x for all z,y € R.

Problem 2. Let z,y € R\ {0} and - denotes multiplication in R. Does

the composition
re (] .xl_y
y: 2

define a group?

Solution 2. Yes. We have (z-y)/2 € R\ {0}. The neutral element is
2 and 4/z is inverse to z. The associative law also holds. The group is
commutative.

Problem 3. Let z,y € R. Is the composition z ey := |z + y| associative?
Here | .| denotes the absolute value.

Solution 3. The answer is no. We have

0=(11+ (=D +0] # 1+ (I(-1) +0)| = 2.

Problem 4. Consider the set
G={(a,b)eR?:a#0}.
We define the composition
(a,b) ® (c,d) := (ac,ad +b).

Show that this composition defines a group. Is the group commutative?



4  Problems and Solutions

Solution 4. The composition is associative. The neutral element is (1, 0).

The inverse element of (a,b) is (1/a,—b/a). The group is not commutative
since

(a,b) ® (¢,d) = (ac,ad+b) and (c,d)e(a,b) = (ca,cb+d).

Problem 5. Show that the set {+1,—1,+¢,—i} forms a group under
multiplication. Find all subgroups.

Solution 5. The multiplication table is

. 1 -1 —i
1 1 -1 —1
-1|1-1 1 —1 )
) ) - =1 1
-1 | =t 1 1 -1

From the table we find that the group is commutative. We can also deduce
this property from the commutativity of complex multiplication. From the
table we find that the inverse elements are

17'=1, (-)'=-1, (@)t'=-i, (- '=i.

The associative law follows from the associative law for multiplication of
complex numbers. Thus the set {+1,—1, +i, —i} forms a group under mul-
tiplication. We classify subgroups by their orders. There is only one sub-
group of order 1, the trivial group - {1}. Subgroups of order 2 contain two
elements - the identity element e = 1 and one additional element a. There
are two possibilities: a? = e or a® = a. The first possibility provides one
subgroup: {1,—1} which is commutative. The element (—1) is inverse to
itself, it is in involution. The second possibility reduce to the trivial group
{1}. There are no subgroups of order 3, because the order of a subgroup
must divide the order of the group (Lagrange’s theorem). There is only one
subgroup of order 4 - this is the group itself. Therefore the group has in

total 1 +1 + 1 = 3 subgroups with one proper subgroup.

Problem 6. Let i = +/—1. Let S be the set of complex numbers of the
form q + pi/5, where p,q € Q and are not both simultaneously 0. Show
that this set forms a group under multiplication of complex numbers.

Solution 6. Consider the product of two numbers ¢; + ip1 V5 and g +

ip2V/5.
g3 +ip3V5 = (q1 + ip1V5) (g2 + ip2V5) = q1g2 — 5p1p2 +iV5(q1p2 + P1g2) -
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Thus
g3 = q192 — 5p1p2 € Q, p3=q1p2 +p192 € Q
and
g3 + 5p3 = (45 + 5p1) (g3 + 5p3) > 0.

Therefore the product of two numbers of the form ¢ + ipv/5 belongs to the
same set. The identity element is 1, i.e. ¢ = 1 and p = 0. The inverse

element is

g—ipV5 _ ¢ +( -p )2\/5

g2 +5p2 ¢+ 5p? g% + 5p? '
The existence of the inverse element follows from the fact that p,q € Q and
are not both simultaneously 0. Thus the inverse element belongs to the
same set. The associative law follows from the same law of multiplication
of complex numbers. Thus the set of numbers of the form q 4 ip\/5, where
p,q € Q forms an abelian group under multiplication.

Problemm 7. Let p be a prime number with p > 3. Let r and s be
rational numbers (r,s € Q) with 2 + s > 0. Show that the set given by
the numbers r + s,/p form a commutative group.

Solution 7. Associativity and commutativity follow from the multiplica-
tion of real numbers. We have

(r1 + s14/P) (12 + 824/D) = (r172 + ps182) + (152 + r251)/D.

Since r172 + ps1s2 € Q and ry1s3 + 251 € Q the operation is closed. The
neutral element is 1, i.e. r =1 and s = 0. The inverse element is

T — 8D _ r —p
(r+syp)(r—syp) 125 " (r2 - s2p) v

Problem 8. Show that the set
{e"* : aeR}
forms a group under multiplication. Note that |e*| = 1.

Solution 8. We have
eiapiB — gilatB)

The neutral element is given by o = 0, i.e €® = 1. The inverse element of
e'* is e~@, The associative and commutative laws follow from the same
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laws of multiplication for complex numbers. Thus the set {e!® : o € R}
forms a 1-dimensional group under multiplication of complex numbers.

Problem 9. Consider the additive group (Z, +). Give a proper subgroup.

Solution 9. An example of a proper subgroup would be all even numbers,
since the sum of two even numbers is again an even number.

Problem 10. Let S:=R\ {-1}. We define the binary operation on S
aeb:=a+b+ab.

Show that (S, e) forms a group. Is the group commutative?

Solution 10. When a, b are elements of S, then a e b is an element of S.
Suppose instead that a + b+ ab = —1. Then a(1 + b) = —(1 + b). Thus
b=—1ora=—1. Since a # —1 and b # —1 we have a+b+ab # —1. The
neutral element is e = 0 since

aee=a+0+4+a0=a, eeb=0+b+0b=0.

To find the inverse of an arbitrary element g we consider right multiplication
by its inverse g~!. We obtain

1

geg l=g+g  +gg  =0=9""=—g/(1+yg).

All elements are invertible, because g # —1. The associative law holds

(aeb)ec=(a+b+ab)ec=(a+b+ab)+c+ (a+b+ab)c
=a+b+c+ (ab+bc+ca)+abc=ae(bec).

The group is commutative since a @b = b e a.

Problem 11. Let G be a group and z,y € G. Show that (zy)~! =
=
T

Solution 11. Let e be the neutral element of G. We have

zyy lz l=gex '=zx 1 =¢

and

y laTley =y ley=y 'y =e.
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Problem 12. Let S be the set of all rational numbers Q in the interval
0 < g < 1. Define the operation (g,p € S)

op — g+p if0<qg+p<1
gep: g+p—1if ¢g+p>1 °

Show that S with this operation is an abelian group.

Solution 12. The group neutral element is 0, i.e. p+0=0+p =p. The
inverse element is p~! = 1 — p since

p+pl=1>1=pepl=1-1=0.

The inverse element exists for all p, because p < 1. Associativity follows
from the associative law for addition of rational numbers. Commutativity
. follows from the commutativity of addition of rational numbers. We can
write each nonzero element of the group as the proper fraction

P=%, a,beN, a<b

where the fraction is irreducible (a and b have no common divisors).

Problem 13. Show that the finite set
Z,:={0,1,...,n—1}

for n > 1 forms an abelian group under addition modulo n. The group is
referred to as the group of integers modulo n.

Solution 13. The neutral element is 0. The inverse of 0 is 0. For any
7 > 0 in Z, the inverse of j is n — j. Obviously the associative law holds.
The group law is

a+b<n=aeb=a+b

at+b>n=aeb=a+b—n, a,b€Z,.

The expressions are symmetric in the two arguments a, b. Thus the group
is abelian.

Problem 14. Let n € N. Let U(n) be the set of all positive integers less
than n and relatively prime to n. Then U(n) is a commutative group under
multiplication modulo n. Find the group table for U(8).

Solution 14. Obviously 1 and n — 1 are elements of U(n), where 1 is the
neutral element. For n = 8 we have U(8) = {1, 3, 5, 7}. The group table
is
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mod8 |1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

Problem 15. Consider the subset of odd integers
{1,3,7,9,11,13,17,19}.
Show that this set forms an abelian group under multiplication modulo 20.

Solution 15. The multiplication table modulo 20 reads

1 |3 |7 |9 |[11[13|17 |19
1 1 |3 (7 |9 (1113|1719
3 [3 (9 (1 |7 |13]|19]| 1117
7T |7 1119 |3 | 17|11 |19 | 13
9 |9 |7 |3 |1 (19|17 |13 |11

11|11 (13|17 (191 |3 (7 |9
13131911173
17117 (11 |19 |13 | 7
19119 (17 13|11 |9

9 (1 |7
1 19 |3
7 13 |1

The table shows that products of each two elements of the set is again
an element of the set. The identity element is 1 - implied by the same
property of modulo 20 multiplication for all integer numbers (or from the
multiplication table). The inverse elements are

117'=11, 137'=17, 177'=13, 197!'=19.

The associative law for modulo 20 multiplication for all integer numbers
implies the same law for the set in question.

Problem 16. Give the group table for the cyclic group Zg of 6 elements.

Solution 16. The neutral element is 0. The group is commutative. The
group table is
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GUR W N~ O
13 I Ol S ] =)
O Ul W
- O Ul W NN
N - O Ul W W
W - OGRS
AW = O Ul

Problem 17. Consider the finite group Zs x Zz which has 2-3 = 6
elements given by (0,0), (0,1), (0,2), (1,0), (1,1), (1,2). The neutral
element is (0,0). Show that Z; x Zj3 is cyclic.

Solution 17. It is only necessary to find a generator. We start with
(1,1). Then

(1,1)=(1,1)
21,1)=(1,1)+(1,1) = (0,2)
3(1,1)=2(1,1)+(1,1) = (1,0)
4(1,1)=3(1,1) + (1,1) = (1,0) + (1,1) = (0,1)
5(1,1) = 4(1,1) + (1, 1) = (0,1) + (1,1) = (1,2)
6(1,1) =5(1,1) + (1,1) = (1,2) + (1,1) = (0,0).

Therefore the element (1,1) generates all elements of the commutative
group Zsg X Z3.

Problem 18. Consider the functions defined on R\ {0,1}
1
f(z) ==z, fa(z)= g fi(z) =1—=z,

x 1

@) ===, @)=t fel@)=1-~.

T

Show that these functions form a group with the function composition f; o
Sk, where

(£5 o fi)(2) := f3(f(2))-
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Solution 18. The neutral element is f;. The group table is

o |fi fo f3 fa fs fe
Hlh f2 fs fa fs fe
fo|fo /i fs fo f3 fa
fa|fs fo fr f5 fa fa
falfa f5 fo H fo fs
fs|fs fa f2 f3 f6 N
fe|foe fz fa fo i fs

For example

(Fso fa)@) = fs(fa(@) =1- —2— = 1 = fi(a)

r—1 1—-z

(fao f3)@) = falfs(@) = g =1~ = = fo(a).

Each element has an inverse. The associativity law holds for function com-
position. The group is not commutative.

Problem 19. An isomorphism of a group G with itself is an automor-
phism. Show that for each g € G the mapping i, : G — G defined by

Tig = g lzg

is an automorphism of G, the inner automorphism of G under conjugation
by the group element g. We have to show that i, is an isomorphism of G
with itself. Thus we have to show it is one to one, onto, and that

(zy)ig = (zig)(yiq)
for all g € G.

Solution 19. If zi, = yi,4, then g~'zg = g~ 'yg. Thus z = y. For onto,
if z € G, then applying the associative law yields

(9297 ")ig =g (929 g ==.
Now (zy)ig = g~ 'zyg and

1 1

(zig)(yig) = (97 'zg) (9 'yg) = g 'zyg

since gg~! = e. Thus (zy)iy = (zig)(yig)-

Problem 20. Let C, be the cyclic group. Show that Cs ~ C3 x Cs.



