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Preface

Improving the quality of mathematics education for middle school students is of
critical importance, and increasing opportunities for students to learn important
mathematics under the leadership of well-prepared and dedicated teachers is essen-
tial. New standards-based curriculum and instruction models, coupled with on-going
professional development and teacher preparation, are foundational to this change.

These sentiments are eloquently articulated in the Glenn Commission Report:
Before It's Too Late: A Report to the Nation from the National Commission
on Mathematics and Science Teaching for the 21st Century (U.S. Department of
Education, 2000). In fact, the principal message of the Glenn Commission Report is
that America’s students must improve their mathematics and science performance
if they are to be successful in our rapidly changing technological world. To this end,
the Report recommends that we greatly intensify our focus on improving the quality
of mathematics and science teaching in grades K-12 by bettering the quality of
teacher preparation, and it also stresses the necessity of developing creative plans to
attract and retain substantial numbers of future mathematics and science teachers.

Some fifteen years ago, mathematics teachers, mathematics educators, and
mathematicians collaborated to develop the architecture for standards-based reform,
and their recommendations for the improvement of school mathematics, instruction,
and assessment were articulated in three seminal documents published by the
National Council of Teachers of Mathematics (Curriculum and Evaluation Standards
for School Mathematics [1989], Professional Standards for School Mathematics
[1991], and Assessment Standards in School Mathematics [1995]; more recently,
these three documents were updated and combined into the single book, NCTM
Principles and Standards for School Mathematics, a.k.a. PSSM [2000]).

The vision of school mathematics laid out in these three foundational doc-
uments was outstanding in spirit and content, yet abstract in practice. Concrete
exemplary models reflecting the standards were needed and implementing the rec-
ommendations would be unrealizable without significant commitment of resources.
Recognizing the opportunity for stimulating improvement in student learning, the
National Science Foundation (NSF) made a strong commitment to bring life to the
documents’ messages and supported several K—12 mathematics curriculum develop-
ment projects (standards-based curriculum), as well as other related dissemination
and implementation projects.

Standards-based middle school curricula are designed to engage students in
a variety of mathematical experiences, including thoughtfully planned explorations
that provide and reinforce fundamental skills while illuminating the power and
utility of mathematics in our world. These materials integrate central concepts in
algebra, geometry, data analysis and probability, and mathematics of change, and
they focus on important unifying ideas such as proportional reasoning.

vii



viii Preface

The mathematical content of standards-based middle grade mathematics mate-
rials is challenging and relevant to our technological world. Its effective classroom
implementation is dependent upon teachers having strong and appropriate math-
ematical preparation. The Connecting Middle School and College Mathematics
Project (CM)? is a three-year (2001-2004) National Science Foundation funded
project addressing the need for improved teacher qualifications and viable recruit-
ment plans for middle grade mathematics teachers through the development of four
foundational mathematics courses with accompanying support materials and the
creation and implementation of effective teacher recruitment models.

The (CM)? materials are built upon a framework laid out in the CBMS
Mathematical Education of Teachers Report (MET) (2001). This report outlines
recommendations for the mathematical preparation of middle grade teachers that
differ significantly from those for the preparation of elementary teachers and
provides guidance to those developing new programs. Our books are designed to
provide middle grade mathematics teachers with a strong mathematical foundation
and connect the mathematics they are learning with the mathematics they will
be teaching. Their focus is on algebraic and geometric structures, data analysis
and probability, and mathematics of change, and they employ standards-based
middle grade mathematics curricular materials as a springboard to explore and
learn mathematics in more depth. They have been extensively piloted in Summer
Institutes, in courses offered at school-based sites, through a variety of professional
development programs, and in both undergraduate and graduate semester courses
offered at a number of universities throughout the nation.

This book is written as an introduction to some basic concepts of number
theory and modern algebra that underlie middle grade arithmetic and algebra,
and thus the approach differs from some traditional texts in these subjects. The
primary goal is to help teachers (both in-service and pre-service) gain a fundamental
understanding of the key mathematical ideas that they will be teaching, so that in
turn they can help their students learn important mathematics.

Throughout the book, the reader will find a number of Classroom Connections,
Classroom Discussions, and Classroom Problems. These instructional components
are designed to deepen the connections between the algebra and number theory stu-
dents are studying now and the algebra they will teach. The Classroom Connections
are middle grade investigations that serve as launch pads to the college level Class-
room Discussions, Classroom Problems, and other related collegiate mathematics.
The Classroom Discussions are intended to be detailed mathematical conversations
between college teacher and pre-service middle grade teachers, and are used to
introduce and explore a variety of important concepts during class periods. The
Classroom Problems are a collection of problems with complete or partially com-
plete solutions and are meant to illustrate and engage pre-service teachers in various
problem solving techniques and strategies. The continual process of connecting what
they are learning in the college classroom to what they will be teaching in their own
classroom provides teachers with real motivation to strengthen their mathematical
content knowledge.

Many of my recent students studied from preliminary versions of these
materials, and their thoughtful comments significantly shaped the contents of this



Preface ix

book. I am most grateful to these present and future teachers and take great pride
in their mathematical growth. I am also thankful for the insightful suggestions of
the many mathematicians and mathematics educators who piloted these materials
in their college classrooms or in professional development venues. I am especially
appreciative to Professors Jennifer Bay-Williams, Kansas State University; Al
Dixon, Western Michigan University; and Steve Ziebarth, College of the Ozarks,
for their careful reviews of a preliminary version of this text. Their astute and
detailed remarks notably improved the materials. Writing this book has been a great
joy. The mathematical adventure was especially exciting and having the opportunity
to work with outstanding graduate students was an incredible bonus. I am deeply
thankful to David Barker for crafting a comprehensive first draft of Chapter 1. He
and I spent countless hours discussing the learning and teaching of mathematics,
and we learned a great deal from each other. I would also like to extend my sincere
gratitude to graduate students Dustin Foster and Chris Thornhill, to middle grade
teacher Paul Rahmoeller, and to post-doctoral fellow, Jason Aubrey for reading
(re-reading, re-re-reading,. . .) over the manuscript, solving selected exercises, and
making many valuable suggestions. Finally, I am most appreciative to Petra Recter
at Pearson/Prentice-Hall for her expert assistance in bringing this book to print.

Ira J. Papick
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Patterns

CHAPTER

1.1 CLASSROOM CONNECTIONS: REPRESENTING PATTERNS

1.2 REFLECTIONS ON CLASSROOM CONNECTIONS: REPRESENTING PATTERNS
1.3 ARITHMETIC SEQUENCES

1.4 CLASSROOM CONNECTIONS: A QUADRATIC SEQUENCE

1.5 REFLECTIONS ON CLASSROOM CONNECTIONS: A QUADRATIC SEQUENCE
1.6 FINITE ARITHMETIC SEQUENCES

1.7 GEOMETRIC SEQUENCES

1.8 MATHEMATICAL INDUCTION

1.9 CLASSROOM CONNECTION: COUNTING TOOLS

1.10 THE BINOMIAL THEOREM

1.11 THE FIBONACCI SEQUENCE

In a broad sense, the study of patterns and relationships is the essence of mathematics
and, accordingly, it occupies a central position in school mathematics. Mathemati-
cians seek to understand fundamental structures by searching for patterns and
relationships within classes of examples and collections of data. Their investigations
involve insightful questions and conjectures in unison with creative thinking and
problem-solving strategies, and it is especially crucial for all students of mathematics
to comprehend and embrace these habits of discovery.

1.1 CLASSROOM CONNECTIONS: REPRESENTING PATTERNS

We begin this chapter by looking at the Tiling Pools problem from the eighth grade
module Say It with Symbols of the Connected Mathematics curriculum. As you work
through this problem (as well as through other middle-school problems throughout
this textbook), pay special attention to the following questions:

1. What strategies did you use to solve the problem, and what strategies do you
think students will use?
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2. What types of rules did you discover, and what types of rules do you think
students will produce?

3. How did you justify your rules, and what types of justifications do you expect
your students to give?

4. What counts as an acceptable justification at the middle-school level?

This problem and others provide the basis of many of our discussions throughout
this chapter and illuminate many important ideas concerning patterns.

Hot tubs and in-ground swimming pools are —1 o A ]
sometimes surrounded by borders of tiles. This — o —
drawing shows a square hot tub with sides of length Ll & |
5 feet surrounded by square border tiles. The border : i

tiles measure 1 foot on each side. A total of 24 tiles Tl = o

are needed for the border. 1 ! } t ‘

mﬁvnwlthsymboh

Reproduced from page 20 of Say It with Symbols in Connected Mathematics.

FIGURE 1.1.1

In this problem, you will explore this question: If a square pool has sides of
length s feet, how many tiles are needed to form the border?

A. Make sketches on grid ‘paper to help you figure out how many tiles are
needed for the borders of square pools with sides of length 1, 2, 3, 4, 6, and
10 feet. Record your results in a table.

B. Write an equation for the number of tiles, N, needed to form a border for
a square pool with sides of length s feet. ‘

- €. Try to write at least one mgreoquatjon for the number of tiles needed for the
- border of the pool. How could you convince someone that your expressions
 for the number of tiles are equivalent?

Reproduced from page 21 of Say It with Symbols in Connected Mathematics.
FIGURE 1.1.2
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Problem 2.1 Follow-Up
Make a table and a graph for each equation you wrote in part a of Problem 2.1. Do
the table and the graph indicate that the equations are equivalent? Explain.

Is the relationship between the side length of the pool and the number of tiles linear,
quadratic, exponential, or none of these? Explain your reasoning.

a. Write an equation for the area of the pool, 4, in terms of the side length, s.

b. Is the equation you wrote linear, quadratic, exponential, or none of these?
Explain.

a. Write an equation for the combined area of the pool and its border, C, in terms
of the side length, s.

b. Is the equation you wrote linear, quadratic, exponential, or none of these?
Explain.

Reproduced from page 21 of Say It with Symbols in Connected Mathematics.

FIGURE 1.1.3

1.2 REFLECTIONS ON CLASSROOM CONNECTIONS: REPRESENTING PATTERNS

It is common for students to think about and solve mathematics problems in a
multitude of ways. For example, here are the thoughts of eighth graders Meaghan
and Reese on the problem of determining the number of square tiles (1 foot by 1
foot) needed to form the boundary of a square pool of dimensions s feet by s feet
(where s is a positive integer).

Meaghan. 1 drew out the first three pools and noticed that each time you add a
foot to the side of the pool, the number of tiles goes up by 4.

Reese. I noticed that for a pool of any size you will always have a tile for each
foot of the perimeter, or 4n, and then you need 4 more tiles for the corners, so I
added 4.

Meaghan and Reese have taken different approaches in solving this problem,
and it is instructive to look at their responses in more detail.

Meaghan’s Strategy. Meaghan initially drew pictures of square pools with side
lengths 1, 2, and 3 feet. Once she drew these examples and calculated the number
of tiles needed to surround the pools, she compared the results and conjectured a
relationship between pools with consecutive integer side lengths.
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8 tiles !
12 tiles 16 tiles

By looking at the pattern 8 tiles, 12 tiles, and 16 tiles, she concluded that, “each
time you add a foot to the side of the pool, the number of tiles goes up by 4.”
Hence, if you knew the number of tiles required to surround a square pool of length
9 feet (which can be determined from the previous cases), you could then find the
number of tiles required to surround a square pool of length 10 feet by simply
adding 4. Moreover, since you know the number of tiles for a square pool of length

1 foot, you can determine the number of tiles for all whole number length square
pools. Why?

Classroom Problem. Using Meaghan’s rule, determine how many tiles are needed
for a square pool of length 9 feet. Represent your data in a table format (as here).

Side Length in Feet | Number of Tiles
1 8
2 12
3 16
4
5
6
7
8
9

The primary advantage of Meaghan’s rule is that it is easy to calculate the number
of tiles for a square pool of length n provided you know the number of tiles for a
square pool of length n — 1, while the main disadvantage is that it is difficult to
determine the number of tiles for larger length square pools (e.g., for a square pool
of length 2,467 feet).

Question. Meaghan arrived at her rule by inspecting some particular examples
and did not show that her rule holds for all positive integer lengths. How would you
justify the validity of Meaghan’s rule for all positive integer lengths?
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The kind of pattern that Meaghan observed—where after some explicit terms
are specified, each subsequent term is defined in terms of a previous term or
a combination of previous terms—is called a recursive pattern. The rule that
describes the relationship between these consecutive terms is called a recursive rule
or formula.

Representing Rules. The middle grades are an important time for students as they
begin to develop the ideas of variable and function. The gradual transformation
from describing rules using language to describing rules using symbols is a key
transition during this time. Notation, which is intended to simplify thinking, can
often be confusing to students during their initial exposure because they perceive
the notion of variable in a variety of ways. Hence, an appropriate understanding of
what these representations mean and how they are used is a must for students.

Although Meaghan described her rule in words, it is possible to express it in
symbols. This kind of representation is especially useful for more complicated rules,
since it compresses information into notation that is more workable. For example, if
we let T} represent the number of tiles in a square pool of length 1 foot (the value of
the pattern’s first term), 75 represent the number of tiles in a square pool of length
2 feet (the value of the pattern’s second term), etc., then Meaghan’s recursively
defined rule for the pool problem could be stated as follows:

T, =8
Tu=Ta1 + 4 (n > 1)

For this rule, T, represents the number of tiles needed to surround a square pool
with a side of length n (the value of the n'" term of the pattern), and T,_; is
the number of tiles required for a square pool of length n — 1 (the value of the
(n — 1)1 term of the pattern).

Classroom Problem. Let’s write a recursive rule for the pattern that occurs in the
following problem.

Farmer Jim (or Jimbo as he is called by his closest friends) uses fence panels
of the same length to create pens for his animals. He decides to arrange the pens in
a single row with all the pens being connected as illustrated in the picture here.

The number of fence panels needed for these three pens is recorded in the following
table.

Term Value
(number of animal pens) | (number of panels required)
1 4
2 7
3 10
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We see that it takes four panels to create the first animal pen, and this can be
expressed in notation as P; = 4. Next, we need to find a relationship between
consecutive terms of this pattern. If an additional pen is appended to the first pen,
Farmer Jim will use one panel from the end of the first pen and add three more
panels to get to the required four panels to complete the second pen. Similarly, three
more panels are needed to create the third pen, and so the n'? pen is built by adding
three panels to the (n — 1)™ pen. This relationship can be expressed as

P,=P, 1 + 3,
and so the complete recursive formula describing this situation is given by:

P =4
P,=P,_ 1 +3. &

Reese’s Strategy. Recall that Reese’s approach to the Tiling Pools problem
differed from Meaghan’s strategy. He states, “For a pool of any size, you will always
have a tile for each foot of the perimeter, or 4n, and then you need four more
tiles for the corners.” Instead of comparing the number of tiles needed for a few
different-length square pools (as Meaghan did), Reese developed a systematic way
of counting the tiles needed for each square pool of length n (n a positive integer).
The rule Reese developed establishes an explicit relationship between the length of
a side of the pool and the number of tiles required to surround it.

n = positive integer length | 4n + 4 = number of tiles in the
(in feet) of a square pool boundary of the pool
1 41 +4=28
2 42 +4=12
3 43 + 4=16
4 44 +4=20
5 45 +4=24

In mathematical terms, Reese’s explicit rule defines a function 7 on the set of
positive integers, given by T(n) = 4n + 4, where n is a positive integer length (in
feet) of a square pool, and T'(n) is the total number of tiles needed for a square pool
of length n.

In general, a function f whose domain is the positive integers (into any other
set) is called an infinite sequence (or simply a sequence). The range of a sequence,

Range of f = {f(n): nis a positive integer},
is usually written in the form

alsaZsaS""aana""
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where f(n) = a, for each positive integer n. The sequence that Reese discovered is
8, 12, 16, 20, 24,...,4n + 4,...,

where 7 is a positive integer.

Convention.  Since a sequence’s domain is always the positive integers, it is
common practice to identify a sequence f with its range: a;,a2,4a3,...,ay,. ..

Using Reese’s explicit rule, it is easy to calculate the number of tiles needed
for a square pool of length n. This is a benefit of his rule over Meaghan’s recursive
rule. However, as we shall see when we study the Fibonacci sequence (Section 1.11),
it is not always straightforward to determine an explicit rule for a given sequence.

An Explicit Rule for Farmer Jim. Let’s return to the problem of Farmer Jim’s
livestock pens, but this time we try to describe the number of pens with an explicit
rule rather than a recursive rule.

The following table consists of some conclusions we have drawn from looking
at specific cases, which may be useful in formulating a specific rule.

Number of Pens | Panels Required
1 4
2 7
3 10
4 13
5 16

Looking at the table of values, it might be conjectured that the number of
panels required for any (positive integer) number of pens n is P(n) = 3n + 1;
however, we cannot draw this conclusion based solely on these few cases.

It is common for (middle grade) students to create rules based upon only a few
cases, often a single case. They might look at the previous table and see that 3 pens
require 10 panels and thus state that the general rule is P(n) = n> + 1, which as it
turns out, only happens to work for this particular case. It is important for all students
of mathematics to understand that they must justify general conclusions through
valid arguments and not rely exclusively on the verification of a few cases. Since we
cannot guarantee from the table’s information that the explicit rule describing the
pattern of this problem is P(n) = 3n + 1, let’s turn to the context of the problem
to assist us in justifying this rule.

Justification. One way to construct n pens is to put together »n groups of three-sided
pens and join them in the manner illustrated here (for n = 4). This grouping requires
3n panels and lacks one panel to close off the last pen. Hence, the expression3n + 1
gives the total number of panels required for n pens.



