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PREFACE

What we have to learn to do
we learn by doing . . .

— ARISTOTLE, Ethics

Purpose

This book is an introduction to artificial intelligence and its many applications. Our goal in
writing it is to place Al within the larger context of engineering, science, and philosophy.
This includes not only computer science, but the full range of scientific efforts to under-
stand the nature of intelligent activity.

There are three features of this book that reflect our own attitudes towards teaching
artificial intelligence and distinguish our book from others.

First, we unify the diverse branches of Al through a detailed discussion of its theoret-
ical foundations. Throughout its history, Al has exhibited two major methodological
schools, often called the neats and the scruffies. The neats emphasize formal treatment of
the theory behind intelligent programs including the analysis of search algorithms, the
establishment of a theory of knowledge representation using logic or other well-defined
formalisms, and the careful characterization of the soundness and completeness of infer-
ence strategies. The scruffies take a more application-oriented approach, beginning with a
problem to be solved and finding, through intuition and experiment, the best techniques for
solving that particular problem.

A major goal in writing this text is to unify these two approaches; indeed, we believe
that these schools have much more in common than is usually admitted. Theoretical work
in Al leads to an increasing awareness that intelligent behavior relies on domain-specific
knowledge, knowledge that is often obtained by observation, experimentation and revision.
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Conversely, the best Al implementations are usually built on the knowledge representation
and problem-solving techniques developed in theoretical research.

To construct a unified approach to Al, we start with a well-marked separation between
theory and practice by formally considering search in Part II and later implementing search
algorithms in PROLOG (Chapters 6 and 13) and LISP (Chapters 7, 14 and 15). However,
even the more formal chapters use realistic examples to illustrate important issues. For
instance, much of our theoretical discussion of representation and search is illustrated
through an extended example of an expert system for financial advice, our chapter on expert
systems is anchored by a case study of the MYCIN program, and our machine learning
algorithms, in Chapter 12, are supported by numerous implemented examples. The chapter
on natural language concludes with a detailed discussion of the implementation of a natural
language front end for a data base system.

The second feature of this text is the development, justification, and use of advanced
representational formalisms and search techniques. This begins with the classic approach
to representation and problem solving using predicate calculus, recursion-based graph
search, and heuristics. We then extend this model to the knowledge-intensive approaches
used for modern intelligent systems. Much of the emphasis of Al reaserch is on the devel-
opment of languages which directly support specific knowledge structures such as class
hierarchies, frames and objects, and tools for describing the semantics of natural languages.
We discuss the importance of structuring information and control with semantic nets, con-
ceptual graphs, frames, inheritance systems, and other representational techniques.

Part V, and especially Chapter 15, introduces object-oriented programming and hybrid
expert system design. We present three implementations of object-oriented representations,
two in LISP, the first with OOPS, our own object system, the second with CLOS, the
Common Lisp Object System; and one in PROLOG. Our presentation gives the reader the
opportunity to design and build several simple object-based and hybrid applications.

Finally, we show how the algorithms and data structures of Al programming can be
built using either LISP or PROLOG. We have covered both languages because they repre-
sent two very different but equally important AI programming paradigms: logic program-
ming in PROLOG and functional programming in LISP. We feel that the skills of the pro-
grammer depend on a knowledge of all available tools, and each language has its
representational strengths and search-based advantages. Indeed, in many modern program-
ming environments the strengths of both languages are available.

The third feature of this book is that we place artificial intelligence within the context
of empirical science. We do this in several ways. First, by introducing artificial intelligence
in Chapter 1 as part of the long tradition of a science of intelligent systems. This context
shows A, not as some strange abberation from the scientific tradition, but as part of a
general quest for knowledge about and understanding of intelligence. Furthermore, our Al
programming tools, along with an exploratory programming methodology in Chapter 8,
are ideal for exploring our environment. Our tools give us a medium for both understanding
and questions. We come to appreciate and know phenomena constructively, that is, by
progressive approximation.

Thus we see each design and program as an experiment with nature: we propose a
representation, we generate a search algorithm, and then we question the adequacy of our
characterization to account for part of the phenomenon of intelligence. And the natural
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world gives a response to our query. Our experiment can be deconstructed, revised,
extended, and run again. Our model can be refined, our understanding extended. We con-
sider artificial intelligence as empirical enquiry in detail in Chapter 16.

New in This Edition

Machine learning, currently a very important research topic in the Al community, is the
first major addition to this edition. The ability to learn must be part of any system that
would claim to possess general intelligence. Learning is also an important component of
practical Al applications such as expert systems. The learning models presented in Chapter
12 include explicitly represented knowledge where information is encoded in a symbol
system and learning takes place through algorithmic manipulation, or search, of these struc-
tures. We also present the sub-symbolic approach to learning. In a neural net, for instance,
information is implicit in the organization and weights on a set of connected processors,
and learning is a rearrangement and modification of the overall structure of the system. We
also introduce genetic algorithms where learning is cast as an evolutionary and adaptive
process. We compare and contrast the directions and results of each approach to machine
learning and develop learning algorithms first in pseudocode and then in LISP and/or
PROLOG.

Our second major addition is object-oriented design with CLOS, the Common Lisp
Object System. CLOS is now the ANSI standard for object based design in Common LISP.
We show the power of CLOS for building object systems, and in Chapter 15 we develop a
simulation for a heating system that can be easily extended by the reader.

We have also extended the presentation of the other applications of the book. After
presenting the knowledge representations for semantic meaning of natural language in
Chapter 9, we discuss the integration of syntax and semantics in the implementation pro-
grams of Chapter 10. We design and build context-free, context-sensitive, and a recursive
descent semantic net parser in Chapter 13. Other application areas explored in the text
include planning (Chapter 5) and automated reasoning (Chapter 11). In addition to these
traditional Al application areas, we briefly examine the role of Al in understanding human
intelligence through a treatment of cognitive science (Chapter 16).

The Contents

Chapter 1 introduces artificial intelligence, beginning with a brief history of attempts to
understand mind and intelligence in philosophy, psychology, and other areas of research.
In a very important sense, Al is an old science, tracing its roots back at least to Aristotle.
An appreciation of this background is essential for an understanding of the issues addressed
in modern research. We also present an overview of some of the important application areas
in AL Our goal in Chapter 1 is to provide both background and a motivation for the theory
and applications that follow.
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Chapters 2, 3, 4, and 5 (Part II) introduce the research tools for Al problem solving.
These include the predicate calculus to describe the essential features of a domain (Chapter
2), search to reason about these descriptions (Chapter 3) and the algorithms and data struc-
tures used to implement search. In Chapters 4 and 5, we discuss the essential role of heu-
ristics in focusing and constraining search based problem solving. We also present a num-
ber of architectures, including the blackboard and production system, for building these
search algorithms.

Part III presents Al languages. These languages are first compared to each other and
to traditional programming languages to give an appreciation of the Al approach to prob-
lem solving. Chapter 6 covers PROLOG, and Chapter 7, LISP. We demonstrate these lan-
guages as tools for Al problem solving by building on the search and representation tech-
niques of the earlier chapters, including breadth-first, depth-first and best-first search
algorithms. We implement these search techniques in a problem-independent fashion so
they may later be extended to form shells for search in rule based expert systems, semantic
net and frame systems, as well as in other applications.

Chapters 8, 9, 10, 11, and 12 make up Part IV of the text: representations for knowl-
edge-based systems. In Chapter 8 we present the rule-based expert system. This model for
problem solving is a natural evolution of the material in the first five chapters: using a
production system of predicate calculus expressions to orchestrate a graph search. Both
data-driven and goal-driven search are presented in this context and the role of heuristics is
demonstrated. We also discuss the unique problems encountered in applying expert sys-
tems. Examples are taken from the Stanford University research, including presentations
of MYCIN and Teiresias.

Chapters 9 and 10 present Al techniques for modeling semantic meaning, with a par-
ticular focus on natural langauge understanding. We begin with a discussion of semantic
networks and extend this model to include conceptual dependency theory, conceptual
graphs, frames, and scripts. Class hierarchies and inheritance are important representation
tools; we discuss both the benefits and difficulties of implementing inheritance systems for
realistic taxonomies. This material is strengthened by an in-depth examination of a partic-
ular formalism, conceptual graphs. This discussion emphasizes the epistemological issues
involved in representing knowledge and shows how these issues are addressed in a modern
representation language. In Chapter 10, we also show how conceptual graphs can be used
to implement a natural language data base front end.

Theorem proving, often referred to as automated reasoning, is one of the oldest areas
of Al research. In Chapter 11, we discuss the first programs in this area, including the Logic
Theorist and the General Problem Solver. The primary focus of the chapter is binary reso-
lution proof procedures, especially resolution refutations. More advanced inferencing with
hyper-resolution and paramodulation is also discussed.

In Chapter 12 we present a detailed look at algorithms for machine learning, a fruitful
area of research spawning a number of different problems and solution approaches. The
learning algorithms vary in their goals, the training data considered, the learning strategies,
and the knowledge representations they employ. The symbol-based learning includes
induction, concept learning, version space search, and ID3. The role of inductive bias is
considered, as well as generalizations from patterns of data, and the effective use of knowl-
edge to learn from a single example with explanation-based learning. Category learning, or
conceptual clustering, is presented with unsupervised learning. We also present subsym-
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bolic learning with genetic algorithms and neural nets. We take care to compare and con-
trast these diverse approaches to machine learning.

Part V, Chapters 13, 14, and 15, presents advanced Al programming in PROLOG and
LISP. Here we discuss techniques for implementing the knowledge representation and
problem-solving algorithms of Part IV. A major feature of these chapters is the implemen-
tation of expert system shells in both LISP and PROLOG. These shells include certainty
measures, user queries, and complete explanation facilities. They illustrate the major archi-
tectural features of expert system shells and provide a useful tool for building such systems.
We also implement the algorithms from Chapter 12 in machine learning, with several algo-
rithms presented. Finally, we discuss the implementation of inheritance in frame and net-
work representations. All three chapters discuss the formal underpinning of each language:
resolution refutation systems for PROLOG and functional programming for LISP.

In Chapter 15, we discuss frame- or object-based design, showing how object-oriented
techniques are used both for organizing traditional programs and for developing knowl-
edge-based systems. We then give examples of the techniques used to implement object-
oriented programming in both LISP and PROLOG. Finally, the chapter discusses the
integration of rule- and frame-based approaches in hybrid knowledge engineering
environments.

The final chapter, 16, serves as an epilogue for the text. It introduces the discipline of
cognitive science, addresses contemporary challenges to Al, discusses AI’s current limita-
tions, and examines what we feel is its exciting future.

Using This Book

Artificial intelligence is a big field; consequently, this is a big book. Although it would
require more than a single semester to cover all of the material in the text, we have designed
it so that a number of paths may be taken through the material. By selecting subsets of the
material, we have used this text for single semester and full year (two semester) courses.

Benjamin/Cummings (390 Bridge Parkway, Redwood City CA 94065) will provide
an instructor’s manual for this text. It includes suggestions for teaching topics, selected
figures and formatted algorithms that can be used for making view graphs, and a selection
of worked out exercises. The instructor’s manual also suggests some paths through the
book, depending on time allowed and topics chosen.

We assume that most students will have had introductory courses in discrete mathe-
matics, including predicate calculus and graph theory. If this is not true the instructor should
spend more time on these concepts in the sections at the beginning of the text (2.1, 3.1).
We also assume that students have had courses in data structures including trees, graphs,
and recursion-based search using stacks, queues, and priority queues. If they have not, they
should spend more time on the beginning sections of Chapters 3, 4, and 5.

The algorithms are described using a Pascal-like pseudo code. This notation uses the
control structures of Pascal along with English descriptions of the tests and operations. We
have added two useful constructs to the Pascal control structures. The first is a modified
case statement that, rather than comparing the value of a variable with constant case labels,
as in standard Pascal, lets each item be labeled with an arbitrary boolean test. The case
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evaluates these tests in order until one of them is true and then performs the associated
action; all other actions are ignored. Those familiar with LISP will note that this has the
same semantics as the LISP cond statement.

The other addition to the language is a return statement which takes one argument
and can appear anywhere within a procedure or function. When the return is encountered,
it causes the program to immediately exit the function, returning its argument as a result.
Other than these modifications we used Pascal structure, with a reliance on the English
descriptions, to make the algorithms clear.

Supplemental material available via Internet

The PROLOG and LISP code in the book as well as a public domain C-PROLOG inter-
preter are available via FTP. To retrieve them: ftp bc.aw.com and log in as “‘anonymous”,
using your e-mail address as the password. Change directories by typing: cd be/luger. View
the “‘readme” file (get README) for current FTP status. Filenames are also available
using the UNIX “Is”, or the DOS “dir” command. Using FTP and de-archiving files can
get complicated. Instructions vary for Macintosh, DOS, or UNIX files. Consult your local
UNIX guide if you have questions.
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