~ ARTIFICIAL
INTELLIGENCE

STRUCTURES AND STRATEGIES FOR COMPLEX PROBLEM SOLVING

GEORGE F. LUGER - WILLIAM A. STUBBLEFIELD



ARTIFICIAL INTELLIGENCE

Structures and Strategies for Complex Problem Solving
Second Edition

George F. Luger
William A. Stubblefield

University of New Mexico, Albuquerque

The Benjamin/Cummings Publishing Company, Inc.

Redwood City, California « Menlo Park, California
Reading, Massachusetts ¢ New York ¢ Don Mills, Ontario
Wokingham, UK. * Amsterdam ¢ Bonn ¢ Sydney
Singapore * Tokyo * Madrid * San Juan



Sponsoring Editor: Carter Shanklin
Production Coordinator: Megan Rundel
Copyeditor: Anna Huff

Cover Designer: Rudy Zehnter
Compositor: GTS Graphics

Cover and part opener artwork by Thomas Barrow.
Copyright © 1993 by The Benjamin/Cummings Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, or stored in a database
or retrieval system, distributed, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise without the prior written permission of
the publisher. Printed in the United States of America. Published simultaneously in
Canada.

The programs presented in this book have been included for their instructional value.
They have been tested with care but are not guaranteed for any particular purpose. The
publisher does not offer waranties or representations, nor does it accept any liabilities
with respect to the programs.

Library of Congress Cataloging-in-Publication Data
Luger, George F.

Artificial intelligence: structures and strategies for complex problem solving

George F. Luger, William A. Stubblefield. —2nd ed.

p. cm.

Includes bibliographical references and index.

ISBN 0-8053-4780-1

1. Artificial intelligence. 2. Knowledge representation (Information theory) 3. Problem
solving. 4. PROLOG (Computer program language) 5. LISP (Computer program
language) I. Stubblefield, William A. II. Title.
Q335.L.84 1992 92-26477
006.3—dc20 CIP

ISBN 0-8053-4780-1

3456789 10-DO-95 94

The Benjamin/Cummings Publishing Company, Inc.
390 Bridge Parkway
Redwood City, California 94065



ARTIFICIAL INTELLIGENCE

Structures and Strategies for Complex Problem Solving
Second Edition




For my wife, Kathleen, and our children Sarah, David, and Peter.
For my parents, George Fletcher Luger and Loretta Maloney Luger.
Si quid est in me ingenii, judices . . .
Cicero, Pro Archia Poeta
GFL

For my parents, William Frank Stubblefield and Maria Christina Stubblefield.
And for my wife, Merry Christina.
She is far more precious than jewels.
The heart of her husband trusts in her,
and he will have no lack of gain.
Proverbs 31:10-11
WAS



PREFACE

What we have to learn to do
we learn by doing . . .

— ARISTOTLE, Ethics

Purpose

This book is an introduction to artificial intelligence and its many applications. Our goal in
writing it is to place Al within the larger context of engineering, science, and philosophy.
This includes not only computer science, but the full range of scientific efforts to under-
stand the nature of intelligent activity.

There are three features of this book that reflect our own attitudes towards teaching
artificial intelligence and distinguish our book from others.

First, we unify the diverse branches of Al through a detailed discussion of its theoret-
ical foundations. Throughout its history, Al has exhibited two major methodological
schools, often called the neats and the scruffies. The neats emphasize formal treatment of
the theory behind intelligent programs including the analysis of search algorithms, the
establishment of a theory of knowledge representation using logic or other well-defined
formalisms, and the careful characterization of the soundness and completeness of infer-
ence strategies. The scruffies take a more application-oriented approach, beginning with a
problem to be solved and finding, through intuition and experiment, the best techniques for
solving that particular problem.

A major goal in writing this text is to unify these two approaches; indeed, we believe
that these schools have much more in common than is usually admitted. Theoretical work
in Al leads to an increasing awareness that intelligent behavior relies on domain-specific
knowledge, knowledge that is often obtained by observation, experimentation and revision.

vii



Conversely, the best Al implementations are usually built on the knowledge representation
and problem-solving techniques developed in theoretical research.

To construct a unified approach to Al, we start with a well-marked separation between
theory and practice by formally considering search in Part II and later implementing search
algorithms in PROLOG (Chapters 6 and 13) and LISP (Chapters 7, 14 and 15). However,
even the more formal chapters use realistic examples to illustrate important issues. For
instance, much of our theoretical discussion of representation and search is illustrated
through an extended example of an expert system for financial advice, our chapter on expert
systems is anchored by a case study of the MYCIN program, and our machine learning
algorithms, in Chapter 12, are supported by numerous implemented examples. The chapter
on natural language concludes with a detailed discussion of the implementation of a natural
language front end for a data base system.

The second feature of this text is the development, justification, and use of advanced
representational formalisms and search techniques. This begins with the classic approach
to representation and problem solving using predicate calculus, recursion-based graph
search, and heuristics. We then extend this model to the knowledge-intensive approaches
used for modern intelligent systems. Much of the emphasis of Al reaserch is on the devel-
opment of languages which directly support specific knowledge structures such as class
hierarchies, frames and objects, and tools for describing the semantics of natural languages.
We discuss the importance of structuring information and control with semantic nets, con-
ceptual graphs, frames, inheritance systems, and other representational techniques.

Part V, and especially Chapter 15, introduces object-oriented programming and hybrid
expert system design. We present three implementations of object-oriented representations,
two in LISP, the first with OOPS, our own object system, the second with CLOS, the
Common Lisp Object System; and one in PROLOG. Our presentation gives the reader the
opportunity to design and build several simple object-based and hybrid applications.

Finally, we show how the algorithms and data structures of Al programming can be
built using either LISP or PROLOG. We have covered both languages because they repre-
sent two very different but equally important AI programming paradigms: logic program-
ming in PROLOG and functional programming in LISP. We feel that the skills of the pro-
grammer depend on a knowledge of all available tools, and each language has its
representational strengths and search-based advantages. Indeed, in many modern program-
ming environments the strengths of both languages are available.

The third feature of this book is that we place artificial intelligence within the context
of empirical science. We do this in several ways. First, by introducing artificial intelligence
in Chapter 1 as part of the long tradition of a science of intelligent systems. This context
shows A, not as some strange abberation from the scientific tradition, but as part of a
general quest for knowledge about and understanding of intelligence. Furthermore, our Al
programming tools, along with an exploratory programming methodology in Chapter 8,
are ideal for exploring our environment. Our tools give us a medium for both understanding
and questions. We come to appreciate and know phenomena constructively, that is, by
progressive approximation.

Thus we see each design and program as an experiment with nature: we propose a
representation, we generate a search algorithm, and then we question the adequacy of our
characterization to account for part of the phenomenon of intelligence. And the natural

viii

PREFACE



world gives a response to our query. Our experiment can be deconstructed, revised,
extended, and run again. Our model can be refined, our understanding extended. We con-
sider artificial intelligence as empirical enquiry in detail in Chapter 16.

New in This Edition

Machine learning, currently a very important research topic in the Al community, is the
first major addition to this edition. The ability to learn must be part of any system that
would claim to possess general intelligence. Learning is also an important component of
practical Al applications such as expert systems. The learning models presented in Chapter
12 include explicitly represented knowledge where information is encoded in a symbol
system and learning takes place through algorithmic manipulation, or search, of these struc-
tures. We also present the sub-symbolic approach to learning. In a neural net, for instance,
information is implicit in the organization and weights on a set of connected processors,
and learning is a rearrangement and modification of the overall structure of the system. We
also introduce genetic algorithms where learning is cast as an evolutionary and adaptive
process. We compare and contrast the directions and results of each approach to machine
learning and develop learning algorithms first in pseudocode and then in LISP and/or
PROLOG.

Our second major addition is object-oriented design with CLOS, the Common Lisp
Object System. CLOS is now the ANSI standard for object based design in Common LISP.
We show the power of CLOS for building object systems, and in Chapter 15 we develop a
simulation for a heating system that can be easily extended by the reader.

We have also extended the presentation of the other applications of the book. After
presenting the knowledge representations for semantic meaning of natural language in
Chapter 9, we discuss the integration of syntax and semantics in the implementation pro-
grams of Chapter 10. We design and build context-free, context-sensitive, and a recursive
descent semantic net parser in Chapter 13. Other application areas explored in the text
include planning (Chapter 5) and automated reasoning (Chapter 11). In addition to these
traditional Al application areas, we briefly examine the role of Al in understanding human
intelligence through a treatment of cognitive science (Chapter 16).

The Contents

Chapter 1 introduces artificial intelligence, beginning with a brief history of attempts to
understand mind and intelligence in philosophy, psychology, and other areas of research.
In a very important sense, Al is an old science, tracing its roots back at least to Aristotle.
An appreciation of this background is essential for an understanding of the issues addressed
in modern research. We also present an overview of some of the important application areas
in AL Our goal in Chapter 1 is to provide both background and a motivation for the theory
and applications that follow.

PREFACE



Chapters 2, 3, 4, and 5 (Part II) introduce the research tools for Al problem solving.
These include the predicate calculus to describe the essential features of a domain (Chapter
2), search to reason about these descriptions (Chapter 3) and the algorithms and data struc-
tures used to implement search. In Chapters 4 and 5, we discuss the essential role of heu-
ristics in focusing and constraining search based problem solving. We also present a num-
ber of architectures, including the blackboard and production system, for building these
search algorithms.

Part III presents Al languages. These languages are first compared to each other and
to traditional programming languages to give an appreciation of the Al approach to prob-
lem solving. Chapter 6 covers PROLOG, and Chapter 7, LISP. We demonstrate these lan-
guages as tools for Al problem solving by building on the search and representation tech-
niques of the earlier chapters, including breadth-first, depth-first and best-first search
algorithms. We implement these search techniques in a problem-independent fashion so
they may later be extended to form shells for search in rule based expert systems, semantic
net and frame systems, as well as in other applications.

Chapters 8, 9, 10, 11, and 12 make up Part IV of the text: representations for knowl-
edge-based systems. In Chapter 8 we present the rule-based expert system. This model for
problem solving is a natural evolution of the material in the first five chapters: using a
production system of predicate calculus expressions to orchestrate a graph search. Both
data-driven and goal-driven search are presented in this context and the role of heuristics is
demonstrated. We also discuss the unique problems encountered in applying expert sys-
tems. Examples are taken from the Stanford University research, including presentations
of MYCIN and Teiresias.

Chapters 9 and 10 present Al techniques for modeling semantic meaning, with a par-
ticular focus on natural langauge understanding. We begin with a discussion of semantic
networks and extend this model to include conceptual dependency theory, conceptual
graphs, frames, and scripts. Class hierarchies and inheritance are important representation
tools; we discuss both the benefits and difficulties of implementing inheritance systems for
realistic taxonomies. This material is strengthened by an in-depth examination of a partic-
ular formalism, conceptual graphs. This discussion emphasizes the epistemological issues
involved in representing knowledge and shows how these issues are addressed in a modern
representation language. In Chapter 10, we also show how conceptual graphs can be used
to implement a natural language data base front end.

Theorem proving, often referred to as automated reasoning, is one of the oldest areas
of Al research. In Chapter 11, we discuss the first programs in this area, including the Logic
Theorist and the General Problem Solver. The primary focus of the chapter is binary reso-
lution proof procedures, especially resolution refutations. More advanced inferencing with
hyper-resolution and paramodulation is also discussed.

In Chapter 12 we present a detailed look at algorithms for machine learning, a fruitful
area of research spawning a number of different problems and solution approaches. The
learning algorithms vary in their goals, the training data considered, the learning strategies,
and the knowledge representations they employ. The symbol-based learning includes
induction, concept learning, version space search, and ID3. The role of inductive bias is
considered, as well as generalizations from patterns of data, and the effective use of knowl-
edge to learn from a single example with explanation-based learning. Category learning, or
conceptual clustering, is presented with unsupervised learning. We also present subsym-

PREFACE



bolic learning with genetic algorithms and neural nets. We take care to compare and con-
trast these diverse approaches to machine learning.

Part V, Chapters 13, 14, and 15, presents advanced Al programming in PROLOG and
LISP. Here we discuss techniques for implementing the knowledge representation and
problem-solving algorithms of Part IV. A major feature of these chapters is the implemen-
tation of expert system shells in both LISP and PROLOG. These shells include certainty
measures, user queries, and complete explanation facilities. They illustrate the major archi-
tectural features of expert system shells and provide a useful tool for building such systems.
We also implement the algorithms from Chapter 12 in machine learning, with several algo-
rithms presented. Finally, we discuss the implementation of inheritance in frame and net-
work representations. All three chapters discuss the formal underpinning of each language:
resolution refutation systems for PROLOG and functional programming for LISP.

In Chapter 15, we discuss frame- or object-based design, showing how object-oriented
techniques are used both for organizing traditional programs and for developing knowl-
edge-based systems. We then give examples of the techniques used to implement object-
oriented programming in both LISP and PROLOG. Finally, the chapter discusses the
integration of rule- and frame-based approaches in hybrid knowledge engineering
environments.

The final chapter, 16, serves as an epilogue for the text. It introduces the discipline of
cognitive science, addresses contemporary challenges to Al, discusses AI’s current limita-
tions, and examines what we feel is its exciting future.

Using This Book

Artificial intelligence is a big field; consequently, this is a big book. Although it would
require more than a single semester to cover all of the material in the text, we have designed
it so that a number of paths may be taken through the material. By selecting subsets of the
material, we have used this text for single semester and full year (two semester) courses.

Benjamin/Cummings (390 Bridge Parkway, Redwood City CA 94065) will provide
an instructor’s manual for this text. It includes suggestions for teaching topics, selected
figures and formatted algorithms that can be used for making view graphs, and a selection
of worked out exercises. The instructor’s manual also suggests some paths through the
book, depending on time allowed and topics chosen.

We assume that most students will have had introductory courses in discrete mathe-
matics, including predicate calculus and graph theory. If this is not true the instructor should
spend more time on these concepts in the sections at the beginning of the text (2.1, 3.1).
We also assume that students have had courses in data structures including trees, graphs,
and recursion-based search using stacks, queues, and priority queues. If they have not, they
should spend more time on the beginning sections of Chapters 3, 4, and 5.

The algorithms are described using a Pascal-like pseudo code. This notation uses the
control structures of Pascal along with English descriptions of the tests and operations. We
have added two useful constructs to the Pascal control structures. The first is a modified
case statement that, rather than comparing the value of a variable with constant case labels,
as in standard Pascal, lets each item be labeled with an arbitrary boolean test. The case

PREFACE

Xi



LY

evaluates these tests in order until one of them is true and then performs the associated
action; all other actions are ignored. Those familiar with LISP will note that this has the
same semantics as the LISP cond statement.

The other addition to the language is a return statement which takes one argument
and can appear anywhere within a procedure or function. When the return is encountered,
it causes the program to immediately exit the function, returning its argument as a result.
Other than these modifications we used Pascal structure, with a reliance on the English
descriptions, to make the algorithms clear.

Supplemental material available via Internet

The PROLOG and LISP code in the book as well as a public domain C-PROLOG inter-
preter are available via FTP. To retrieve them: ftp bc.aw.com and log in as “‘anonymous”,
using your e-mail address as the password. Change directories by typing: cd be/luger. View
the “‘readme” file (get README) for current FTP status. Filenames are also available
using the UNIX “Is”, or the DOS “dir” command. Using FTP and de-archiving files can
get complicated. Instructions vary for Macintosh, DOS, or UNIX files. Consult your local
UNIX guide if you have questions.

Acknowledgments

First we would like to thank our reviewers, whose comments often suggested important
additions of material and focus. These include Dennis Bahler, Skona Brittain, John Donald,
Sarah Douglas, Ray Mooney, Bruce Porter, Jude Shavlik, Carl Stern, Marco Valtorta, and
Bob Veroff. Carl Stern, a colleague at the University of New Mexico, has been especially
helpful in the technical editing of this book. Mike Delleney, Jim Skinner, Steve Verzi, and
numerous others participated in using and refining the code. We thank especially a decade
of students who used this text in its preliminary stages and its first edition for their help in
expanding its horizons, as well as in removing its typos and bugs.

We wish to thank Thomas Barrow, internationally recognized artist and University of
New Mexico Professor of Art, who created the six photograms especially for this book
after reading an early draft of the manuscript.

We would also like to thank Vivian McDougal, Lisa Moller, Megan Rundel, and Mary
Tudor at Benjamin/Cummings for their work on the second edition of this text.

In a number of places, we have used figures or quotes from the work of other authors.
We would like to thank the authors and publishers for their permission to use this material.
These contributions are listed at the end of the text.

Artificial intelligence is an exciting and oftentimes rewarding discipline; may you
enjoy your study as you come to appreciate its power and challenges.

George F. Luger
William A. Stubblefield
1 July 1992

Xii

PREFACE



ARTIFICIAL INTELLIGENCE

Structures and Strategies for Complex Problem Solving
Second Edition




TABLE OF CONTENTS

Preface vii

PART |
ARTIFICIAL INTELLIGENCE: ITS ROOTS AND
SCOPE 1

Artificial Intelligence— An Attempted Definition 1

1 Al: HISTORY AND APPLICATIONS 3

1.1 From Eden to ENIAC: Attitudes toward Intelligence, Knowledge, and Human
Artifice 3
11,1 Historical Foundations 4
1.1.2 The Development of Logic 7
11.3 The Turing Test 10

1.2 Overview of Al Application Areas 13
1.2;1 Game Playing 14

1.2.2 Automated Reasoning and Theorem Proving 14

1.2.3 Expert Systems 15

1.2.4 Natural Language Understanding and Semantic Modeling 17
.25 Modeling Human Performance 18

1.2:6 Planning and Robotics 19

1.2.7 Languages and Environments for AT 20

1.2.8 Machine Learning 20

1.2.9 Neural Networks or Parallel Distributed Processing (PDP) 21
1.2.10 Al and Philosophy 22

xiii



1.3

Artificial Intelligence— A Summary 23

1.4 Epilogue and References 24
1.5 Exercises 25
PART Il

ARTIFICIAL INTELLIGENCE AS REPRESENTATION
AND SEARCH 29

Knowledge Representation 30

Problem Solving as Search 36

2

2.0
2.1

22

23

24
2:5
2.6

3.0
3.1

32

THE PREDICATE CALCULUS 41
Introduction 41
The Propositional Calculus 41

2.1.1 Symbols and Sentences 41
2.1.2 The Semantics of the Propositional Calculus 43

The Predicate Calculus 46

221 The Syntax of Predicates and Sentences 46
222 A Semantics for the Predicate Calculus 52

Using Inference Rules to Produce Predicate Calculus Expressions 57

2.3.1 Inference Rules 57
232 Unification 61
233 A Unification Example 65

Application: A Logic-Based Financial Advisor 67
Epilogue and References 72

Exercises 73

STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH
Introduction 75
Graph Theory 78

3.1.1 Structures for State Space Search 78
3.1.2 State Space Representation of Problems 80

Strategies for State Space Search 86
3.2.1 Data-Driven and Goal-Driven Search 86

75

Xiv

CONTENTS



33

34
35

4.0
4.1

4.2

43

4.4
4.5
4.6

5.0
3.1

322 Implementing Graph Search 89
323 Depth-First and Breadth-First Search 92
324 Depth-First Search with Iterative Deepening 99

Using the State Space to Represent Reasoning with the Predicate Calculus 100

3.3.1 State Space Description of a Logical System 100
3.3i2 And/Or Graphs 101
333 Further Examples and Applications 104

Epilogue and References 113

Exercises 114

HEURISTIC SEARCH 116
Introduction 116
An Algorithm for Heuristic Search 120

4.1.1 Implementing ““Best-First’” Search 120
4.1.2 Implementing Heuristic Evaluation Functions 123

4.13 Heuristic Search and Expert Systems 130
Admissibility, Monotonicity, and Informedness 131

42.1 Admissibility Measures 132
422 Monotonicity 134
423 When One Heuristic Is Better: More Informed Heuristics 135

Using Heuristics in Games 137

43.1 The Minimax Procedure on Exhaustively Searchable Graphs 137
432 Minimaxing to Fixed Ply Depth 139
433 The Alpha-Beta Procedure 142

Complexity Issues 146
Epilogue and References 148

Exercises 149

CONTROL AND IMPLEMENTATION OF STATE SPACE
SEARCH 152

Introduction 152
Recursion-Based Search 153

5:1:1 Recursion 153
5.1.2 Recursive Search 154

CONTENTS

XV



5.2 Pattern-Directed Search 156
53 Production Systems 163

5.3.1 Definition and History 163

5.3.2 Examples of Production Systems 167

5.3.3 Control of Search in Production Systems 172
534 Advantages of Production Systems for AI 177

54 Predicate Calculus and Planning 179

5.5 The Blackboard Architecture for Problem Solving 187
5.6 Epilogue and References 190

5.7 Exercises 191

PART Il
LANGUAGES FOR Al PROBLEM SOLVING

Languages, Understanding, and Levels of Abstraction 196
Requirements for AI Languages 198
The Primary Al Languages: LISP and PROLOG 205
PROLOG 206
LISP 207

Selecting an Implementation Language 208

6 AN INTRODUCTION TO PROLOG 210
6.0 Introduction 210
6.1 Syntax for Predicate Calculus Programming 211

6.1.1 Representing Facts and Rules 211

6.1.2 Creating, Changing, and Monitoring the PROLOG Environment

6.1.3 Recursion-Based Search in PROLOG 216
6.14 Recursive Search in PROLOG 219
6.1.5 The Use of Cut to Control Search in PROLOG 222

6.2 Abstract Data Types (ADTs) in PROLOG 224

6.2.1 The ADT Stack 224

6:2.2 The ADT Queue 225

6.23 The ADT Priority Queue 226
6.2.4 The ADT Set 227

195

215

XVi

CONTENTS



6.3
6.4

6.5
6.6
6.7
6.8

7.0
7.1

72

1:3

7.4

e
7.6

A Production System Example in PROLOG 228
Designing Alternative Search Strategies 234

6.4.1 Depth-First Search Using the Closed List 234
6.4.2 Breadth-First Search in PROLOG 235
6.4.3 Best-First Search in PROLOG 237

A PROLOG Planner 239

PROLOG: Toward a Nonprocedural Computing Language 242
Epilogue and References 248

Exercises 249

LISP 252

Introduction 252
LISP: A Brief Overview 253

7.1.1 Symbolic Expressions, the Syntactic Basis of LISP 253
712 Control of LISP Evaluation: quote and eval 257

7.1.3 Programming in LISP: Creating New Functions 258

7.14 Program Control in LISP: Conditionals and Predicates 259
7.1.5 Functions, Lists, and Symbolic Computing 262

7.1.6 Lists as Recursive Structures 264

7.1.7 Nested Lists, Structure, and car/cdr Recursion 267

7.1.8 Functional Programming, Side Effects, set, and let 270
7.1.9 Data Types in Common LISP 275

Search Algorithms in LISP: A Functional Approach to the Farmer, Wolf, Goat,
and Cabbage Problem 276

Higher-Order Functions and Procedural Abstraction 281

7.3.1 Maps and Filters 281
7.3.2 Functional Arguments and Lambda Expressions 284

Search Strategies in LISP 285

74.1 Breadth-First and Depth-First Search 285
7.4.2 Best-First Search 288

Pattern Matching in LISP 289
A Recursive Unification Function 291

7.6.1 Implementing the Unification Algorithm 291
7.6.2 Implementing Substitution Sets Using Association Lists 293

CONTENTS

XVii



