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INTRODUCTION

THESE NOTES ARE the outcome of a series of lectures I gave in the
winter of 1975-'76 at the Tata Institute of Fundamental Research, Bombay.
The object of the research, we - D. FERRAND, L, GRUSON, C, PESKINE

and I - started in Paris was, roughly speaking to find out the equations

defining a curve in projective 3-space (or in affine 3-space or of varieties

of codimension two in projective n-space,) I took the opportunity given to me
by the Mathematics Department of T.I. F.R, to try to put coherently the progress
made by the four of us since our paper [11]. Even though we are scattered
over the earth now, (RENNES, LILLE, OSLO and BOMBAY !) these notes
should be considered as the result of common of all of us. I have tried in the
quick description of the chapters to obey the "Redde Caesari quae sunt Caesaris. "
Chapter I contains certain prerequisites like duality, depth, divisors etc.
and the following two interesting facts:
i) An examplg of a reduced curve in p3 with no imbedded smooth deformation
(an improvement on the counter example ''6.4' in [11] which was shown to
me by G. Ellingrud from Oslo who also informed me that it can be found in
M, Noether [10]).
ii) A proof that every locally complete intersection curve in i can be defined
by four equations,
Chapter II is my personal version of the theory of conductor for a curve,
A long time ago, O, Zariski asked me what my understanding of Gorenstein's
theorem was and this chapter is my answer; even though it contains no valuations

and I wonder if it will be to the taste of Zariski. In it I first recall classical



ii
facts known since Kodaira, through duality, The three main points are as
follows:

If X is a smooth surface, projective over a field k,C, a reduced
irreducible curve on X,X —-L>x, a finite composition of dilations, such
that the proper transform Cof C on X is smooth, one has:

a) the conductor f is related to dualizing sheaves by

-1
f = - né@wc

b) Gorenstein's theorem is a simple consequence of Hl(lPZ, OIP2) =0,

c) Regularity of the adjoint system is equivalent to Hl(i, O}_( (C) =o.

We conclude the chapter with a counter-example which is new in the
litterature:

d) A curve C on a surface X over a field of characteristic p > 5, such that

i) OX(C) is ample,

ii) Kodaira vanishing theorem holds i.e. H!(X,0,(-C)) = 0.
iii) Regularity of the adjoint does not hold.
ie. H'(X, 05 (-C)) f 0.

We also give the proof - shown to us by Mumford - that such a situation
cannot occur in zero characteristic: i, e. HI(X, Ox(-C)) =H1()—(, O)—((-EJ )) over
characteristic zero fields,

Chapter III contains two classical theorems by Castelnuovo. These
theorems have been dug out of the litterature by L.,Gruson,My only effort was
to write them down (with Mohan Kumar)., The point, in modern language, is to

give bounds for Serre's vanishing theorems in cohomology, in terms of the
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degree of the given curve in ]Ps. The two results are the following:

If C is a smooth curve in IPS, J its sheaf of ideals and d its degree,

then
a) B2@®3, smN =0 n L
b BH'(®3, Jm) =0 n>d-2

The reader who is interested in equations defining a curve canonically
embedded may read the version of Saint-Donat [14] of Petri's theorem, in
which coupling the above results with some geometric arguments, he gets the
complete list of equations of such a curve. (In general they are of degree 2,
but here we only get that the degree is less than or equal to three.)

In Chapter IV we give an answer to an old question of Kronecker (and
Severi): a local complete intersection curve in affine three space is set
theoretically the intersection of two (algebraic) surfaces, We also give the
projective version of D. Ferrand: a local complete intersection curve in 3
is set -theoretically the set of zeroes of a section of a rank two vector bundle,
Unfortunately such vector bundles may not be decomposable, The main idea -
which is already in [11], example 2.2 - is that if a curve C is "liee' to itself
by a complete intersection, then the ideal sheaf of the curve C in Oy is -
upto a twist - the dualising sheal w, of C ([11], Remarque 1.5). Starting
from that, we construct an extension of_ OC by we with square of wC zero,
and then a globalisation of a theorem of R, Fossum [3]finishes the proof. The
globalisation is harder in the case of D. Ferrand. It must be said that the final
conclusion in A3 has been made possible by Murthy-Towker [9] (and now
Quillen-Suslin [12]) theorem on triviality of vector bundles on m:;, Going back

to rank two-vector bundles on P3 we have now three ways of constructing them:
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- Horrock's
- Ferrand's
- and by projection of a canonical curve in r3

It will be interesting to know the relations between these families. We
take this opportunity to ask the following question: Can one generalise Gaeta's
theorem (for e. g, [11] Theorem 3. 2) in the following way:

Is every smooth curve in P2 jiee by a finite number of "'liaisons'' to
a scheme of zeroes of a section of a rank two-vector bundle? *

Or as R, Hartshorne has suggested: "What are the equivalence classes
of curves in Il33, modulo the equivalence relation given by "'liaison', A start
in this direction has been taken by his student, A, Prabhakar Rao (Liaison
among curves in Projective 3-space, Ph.D, Thesis [13]), *

I have news from Oslo, saying that I. Gruson and C. Peskine are
starting to understand the mysterious chapter III of tlalphen's paper [5]. I
hope they will publish their results soon. These works and the yet unpublished
notes of D, Ferrand on self-liaison would be a good piece of knowledge on curves
in 3-space.

N. NMohan Kumar has written these notes and it is a pleasure for me to
thank him for his efficiency, his remarks and his talent to convert the "franglais"
I used -during the course to ''good English''. The reader should consider all the
"gallissisms'' as mine and the "indianisms'' him, It has been a real pleasure

for me to work with him and to drink beer with him in Bombay - a city which

* these questions have now been answered by A, P, Rao (the first negatively)
in his paper : ''Liaisons among curves in 3 Inventiones Math, 1978,
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: goes far beyond all that I had expected, in good and in bad. I thank the many
people there who gave me the opportunity of living in India and also made my
stay enjoyable - R, Sridharan, M,S, Narasimhan, R, C, Cowsik, S. Ramanan
and surprisingly Okamoto from Hiroshima University, The typists of the
School of Mathematics have typed these manuscripts with care and I thank them
very much, I also thank Mathieu for correcting the orthographic mistakes and

Rosalie - Lecan for the documentation she helped me with,
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CHAPTER I

PRELIMINARIES

IN THIS CHAPTER, which we offer as an introduction, one will not find
many proofs. The aim is to state clearly some concepts so that we can speak
rigorously of the different ideals defining a projective embedded variety, We
give also the duality theorems and some of their consequences (finiteness,
vanishing and Riemann-Roch theorem for curves), notions which play the role
of 'Completeness of a linear system' or 'Specialness of a divisor'. The reader
will find complete proofs of two intersecting facts:

(i) There exists a curve in IP3 with no imbedded smooth deformation.

(ii) Every curve in IP3 which is locally a complete intersection can be

defined by four equations.
For simplicity we throughout assume that the base field is algebraically closed,

A graded ring A is a ring of the form:

such that A, is a ring, Ai's are all A .. Any

]

fe Ai for some i is said to be a homogeneous element of A, An ideal I of A

o-modules and Ai' AjCAi'P

is said to be a graded ideal, if ¥ fi el, with fi cAi (i.e. fi homogeneous) then

fieI.

Assume A, is a field and also A is generated by A, over A, A,

1
a finite dimensional vector space over AO' We define X = Proj A as follows:
Set theoretically X = { All graded prime ideals of A ¢ Al@Az@. .. }.

We will give X a scheme structure, by covering X by affine open sets:



Let chl . Then,

-1
Ap= 3 (1.1, *)

where (Af)o = {f—rg,— geAn] . (degree 0 elts. in A..)

(Af)o is clearly a ring with identity.

-1

(*) is got by mapping T to f and r-! tof ~ in Af. Denote by X_. the set

f
[‘: (-:X/f": p} , clearly there is a canonical bijection

X; &—>Spec (Af)O.
Transferring the scheme structure to Xy and verifying that this structure is

compatible as we vary feA_, we get a scheme structure on X,

l!
F'xample: 1, lLet A - K[:XO,XI. i, Xn] be polynomial ring in n+1 variables

graded in the natural way: A_= k. A1 = vector space of dimension n+1 with

0

XO’ ce ,Xr1 as generators i. e. A1 = set of all homogeneous linear polynomials

in Xi's, An = set of all homogeneous polynomials in
Xi's of deg n,
Then Proj A = IPn, the projective space of dimension n.

2, Let I be any ideal of A generated by homogeneous polynomials [fl, BRI

Then A' = A/l is a graded ring X = Proj A' and Proj A = P" . X is the

closed subvariety of P defined by equations (fy,..., f ).
M= € M = is said to be a graded A -module over the graded ring
ne ZZ
A= Ai if M is an A-module and Ai.'MnC Mn"'i'

i20 ~
If M is a graded A-module we can associate a sheaf M to M over

X = Proj A as follows: Over X. we define the sheaf to be (Mf)o where (Mf)o

1



is the set of degree zero elements of M, It is a module over (Af10
[Recall that Xf = Spec (Af)o] . One can check that this defines a sheaf over X,
REMARK: A =@ _.
- X
If M is a graded A-module, we define M(n) to be the graded A-module

o~ ~
given by, M(n)k =M We denote M(n) by M (n). In particular,

ntk’

o~ ~
A(n) = A(n) = ()X(n).

If ¥ is any sheaf on X, we denote by F(n) the sheaf ' € r)\(’n) L If

X = Proj A, then Y = Spec A is defined to be a cone over X,
Let P denote the point in Y corresponding to the special maximal ideal

AlﬁB Az@, .. P is defined as the vertex of the cone Y over X,
P

Y

X
Let I be any graded ideal of A, Then A/l is a graded ring, Denote

by Z, the scheme Proj A/I. It can be easily checked that the canonical map

A >A /1 induces a closed immersion Z —»X = Proj A, Conversely given

a closed subscheme Z of X, we can find a graded ideal 1cA, such that the

canonical map Proj A/l

>X is an isomorphism of Proj A/l with Z, Then

we say that 1 ideally defines Z in X, But this [ is not comoletely deter-

mined by Z, One can check that if [ is any ide;al defining Z, then so does
Im” where m corresponds to the special] maximal ideal of A, (i, e, it
corresponds to the vertex of the given cone)

Since we are assuming that AO =k is a field and A is generated by

A1 over k, where A1 is finite dimensional over k, we have a graded ring



homomorphism,

R = k[Xo'xi""xn] —sA,

which is surjective. [ Polynomial rings have the canonical grading]. The
kernel is a graded ideal J in R, So we have a closed imme'rsion
X = Proj A “—)Proj R =IP;:.

Thus all the schemes we have cnnsidered are closed subschemes in some
IP;: (In particular they are all projective).
REMARK, We have already seen that J need not be unique., But if X is

reduced and if we insist that R/J is also reduced then J is unique.

[ Take J

root ideal of any ideal defining X].

If X

Proj R/J, i.e. J is some ideal of R defining X then using (¥)
one can verify that Spec R/J - [P] is uniquely determined. In other words
any ideal J which defines X ideally determines the corresponding cone
everywhere except the vertex,
Examples:
1, Let R = k[Xo,Xl] . So ProjR = IPII{ .

Let J, = (X,) and J, = (xg,xoxl), Then Proj R/J, & Proj R/J,.
J1 ? Jz. Note that (R/Jl)P is Cohen-Macaulay ( °, * depth (R/Jl)IJ = 1) and

depth (R/J2)p = 0, where P is the vertex,
3

2, Take the imbedding of p! in IPY given by :
(xn,x,) ———->(x3 X2 x,,x X2 x3). Then an ideal defining the image in P3
0’71 0’01011
2 2

is J=(X0X XX ,X X -X XX3-X

3~ X Xy Xog¥g- %y %y .) We see that the variety is not

2

a complete intersection and the vertex of the cone is also not a complete

intersection.



We will show now how properties of the vertex affect the variety itself,

PROPOSITION 1.1, Let A = k@A D Az@. .. be a graded ring where A,

is a finitely generated vector space over k generating A as a graded
k-algebra, Let P be the vertex, Then
i) A

P is R, ==>Proj A is Ry

ii) AP is Si == Proj A is §;

iii) AP is a complete intersection == Proj A is locally completely
intersection

iv) AP isa U, F.D =>A is factorial

Proof, Assume that AP has #, Let # denote any of the properties (i), (ii),
(iii), Since Proj A is covered by open sets of the type Spec Amo, ch1 ,
it suffices to prove that # holds for each one of them,

So let p ¢ Spec A(ﬂo, We want to show that (A(f)o)p has # But

-1
(A(f)o)p has # <==>A(p [TT ]p[T’T-I] has #,

As we have already seen A(f) [T,T-l]: A; and then plT, T’l'] will
o
correspond to a prime ideal gA;, (Q—)A a homogeneous prime ideal,) So

it suffices to show that # holds for A Now q is contained in P, since

f(qAg)

A . The result then follows from the
P(aAp)

fact that AP has # and hence any localization of Ay also has #. As iv) is easy

q is homogeneous and Af(qu-) [

we leave it to the reader,
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2. COHOMOLOGY OF COHERENT SHEAVES: Let R = k[ XO' e ,Xn] . Then

to any coherent sheaf 'F on IP" , one can associate a graded R-module F of

finite type. This correspondence is not unique. But given a graded R-module

F, we can associate to it a unique sheaf on IPn. For the definition of cohomolo
and results on cohomology we refer the reader to FAC by J, P, Serre and loca
cohomology by A, Grothendieck., We denote by OIP“ (1) the line bundle got

by hyperplane in IPn.

REMARK, O (-1) =Hom (92 _ (1), O_ ) =(0__(1)",

- P" i 2 P

mPn
PROPOSITION 2,1, There is an exact sequence for any graded R-module M

0 1
0 ——>H(I))(M) ——M —— ¢ H (P, ff (m) —H (M) —>0,
meZZ
i+1 i, _n e~ )
and H (M)= @& H((IP ,M(m))ipl.
p me ZZ

Proof. This statement is almost the same as Prop. 2.2 in LC, Putting

X = Spec R and P = Y in that result we get

0 —>HO M) —>M —5> 1 (Spec R - £ PY,M)—s HL(M) —>0,
where M is the sheaf defined by M on Spec R-P and
i+1 ~_1i ~ .
HP (M) =H (Spec R-P, M), i >0,

i ~ o~ i n
So we only have to check that Hl(Spec R - P, M) =] HI(IP , M(m)), for every i,
m

canonically, We have a map Spec R - P -2 IP" which is a surjection and

an affine map. So
i n ~ i ~
H (IP ,p*M) ——>H (Spec R - P, M),

So we want to show that,



HY(P",p M) =@ H'(P", M(m)), VYi.
* m

But one checks that

~

p*M = M(m)
m

canonically and the result follows.
Example: M = O¢ » where C is a reduced curve in IP". M = R/J.J is an
ideal defining C,

R/J =@ P, R/I(m) = 5", Op(m))

®
where O (m) = O (1) ™ and Oc(1) = Opn (1y/ ¢

@ 1’ (®", o (m) =@ H'(C, O (m)).

Claim: The map R/J ——>@H0(C, Oc(m)) is injective if J is the biggest
ideal defining C,.
From the above exact sequence, we get
if R|J —>T HO(C, Oc(m)) is injective
then H(I),(R/J) =0 i.e, depthy R/J >1, (By Theorem 3.8 of L.C,)
then P is not an imbedded component
hence J is the biggest ideal defining C.

Claim: If C is a smooth curve,

R/J —>@H°(c, Op(m))
m

is surjective if and only if C is arithmetically normal.

By the above exact sequence



R/J —>EBH0(C, Oc(m)) is injective and surjective
0 1
HP(R/J) = HP(R/J) =0 depthPR/J > 2 by Th. 3.8 of LC
since Spec R/J - [P] is normal we have to check normality only at P, Since

P is of codim 2 in Spec R/J, (R/J)P is normal by Serre's criterion.

i.c. C is arithmetically normal

3. VANISHING THEOREM AND DUALITY

VANISHING THEOREM (SERRE). Let F be a coherent sheaf on " Then

for all i >0, Hi(IPn,'F (m)) = 0 and HO(IPn, F (m)) generate F (m) as 0[pn

module for m >0,

DUALITY THEOREM, LetF be a locally free sheaf on IPn, of finite type.

n

1

w =AQ , where is the sheaf of differentials., So
Pn P"/k " /k

w =0 _(-n-1), Then HY{P"F)xH " 'P", Fow —>u"(P", 0=k is
IP“ H)n .

a perfect pairing.

DUALITY ON A LOCALLY COHEN-MACAULAY CURVE C: Let (]’ be a locally

sheaf of finite rank on C &>IP", Then,

i 1-i \'4 ~ 1 . -

H (C,’f) xH "(C, F® mC) —a H (C, wC) is a perfect pairing,
. -1
th w. = Ext" , .

wi C x Ipn(OC mIP")

. _ max 1
1, If X is smooth, wx- A nX/k

2, Let X and Y be equidimensional locally Cohen-Macaulay varieties with
X <Y, If c .is the codimension of X in Y, then
- c
Wy = Ext'(Oy, wy).
COROLLARY: If X and Y are as above with X a divisor on Y, then

(L &”Y)‘X = wx where L is the line bundle associated to the divisor X,



