Axel van Lamsweerde

Requirements
Engineering

From System Goals 1o UML Models to Software Specifications

Requirements Engineering

From System Goals to UML Models to
Software Specifications

Axel van Lamsweerde

FWILEY

A John Wiley and Sons, Ltd., Publication

Copyright © 2009 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.com
Visit our Home Page on www.wiley.com

Reprinted June 2010

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and
Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Lid, Safforn House, 6-10 Kirby Street,
London ECIN 8T8, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the
Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed
1o permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names
used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not

associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the
understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is
required, the services of a competent professional should be sought.

Otber Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, Ontario, L3R 4]3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears

in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:

Lamsweerde, A. van (Axel)
Requirements engineering : from system goals to UML models to software specifications / Axel van Lamsweerde.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-01270-3 (pbk.)
1. Software engineering, 2. Systems engineering. [. Title.
QA76.758.1.28 2009
005.1 - de22
2008036187

Credit for cover image: Kunsthistorisches Museum
Vienna/Bridgeman Art Library: Bruegel/Tower of Babel, 1563

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library
ISBN 978-0-470-01270-3

Typeset in 10/13pt Sabon by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Bell & Bain, Glasgow

Requirements Engineering

Pour Dominique l
Avant tout, et pour tout

uring the past 60 years of software development for digital computers, development
technique, in one of its dimensions, has evolved in a cyclical pattern. At each successive

stage, developers recognize that their task has been too narrowly conceived: the heart
of the problem is further from the computer hardware than they had thought. Machine code
programming led to Fortran, Cobol and Algol, languages aimed at a more problem-oriented
way of programming. Then, as program size grew with increasing machine capacities, mere
program writing led to notions of program design, software architecture, and software function
specification in the large. In a culminating step, functional specification led to a more explicit
focus on system requirements — the needs and purposes that the system must serve.

As a wider range of applications embraced more ambitious systems, it gradually became
apparent that identifying and capturing system requirements was not an easy task. Published
surveys showed that many systems failed because their requirements had not been accurately
identified and analysed. Requirements defects proved enormously costly to repair at later stages.
By the mid-1980s requirements engineering became recognized as an inchoate discipline, or
sub-discipline, in its own right. Since the early 1990s it has had its own conferences and
a growing literature. It embraces a large spectrum of activities, from discovering the needs
and purposes of stakeholders — everyone who would be in any substantial way touched by
the proposed system — and resolving the inevitable conflicts, to devising detailed human and
computer processes to satisfy the identified system requirements. Requirements engineering
must therefore include investigation and analysis of the world in which the requirements have
their meaning, because it is in, and through, that world that the computer, executing the
developed software, must bring about the desired effects.

Requirements engineering is hard. It is hard to elicit human needs and purposes and to bring
them into harmony. Furthermore, there is an inherent dissonance between the quasi-formal
world of computer programs — defining the programmed machine in each system — and the
non-formal problem world of the system requirements. Programs can be treated as formal
mathematical objects, capable of being proved to satisfy a given formal specification. The

Foreword

world of system requirements, by contrast, may comprise parts drawn from the natural world,
from human participants, from engineered devices, from the built environment, and from every
context with which the system interacts directly or indirectly. The problem world is typically
heterogeneous and inherently non-formal. We implant the machine in this world, and we
program the machine to monitor and control the world through the narrow interface of states
and events that it can sense and affect directly. To the extent that the system aims at automation,
we are handing to a formally programmed machine a degree of control over a complex and
non-formal reality. The common sense and everyday practical knowledge with which human
beings can deal with the world is replaced by the formal rules embodied in the software. Even
if a system is adaptive, or intelligent or self-healing, its abilities are rigidly bounded by the
machine’s programmed behaviour, and by the narrow interface which provides it with its sole
window on the problem world.

Requirements engineers, then, must be at home in both formal and non-formal worlds, and
must be able to bring them together into an effective system. Axel van Lamsweerde has been
among the leaders of the requirements engineering discipline since the 1980s, well qualified
for this role by a strong background in formal computer science — his early publications
were formal papers on concurrency —and an intense practical interest in all aspects of the
engineering of computer-based systems. This splendid book represents the culmination of
nearly two decades of his research and practical experience. He and his colleagues have
developed the KAOS method associated with his name, and have accumulated much practical
experience in developing solutions to realistic problems for its customers and users.

As we might expect, the book does what a book on requirements engineering must ideally
do. The conceptual basis of the book and the KAOS method is the notion of a goal. A goal
is a desirable state or effect or property of the system or of any part of it. This notion is
flexible enough to apply through many levels of analysis and decomposition, from the largest
ambitions of the organization to the detailed specification of a small software module. This
book brings together the most formal and the most non-formal concerns, and forms a bridge
between them. Its subject matter ranges from techniques for eliciting and resolving conflicting
requirements of stakeholders, through the structuring of system goals and their allocation to
agents in the machine and the problem world, to the definition and use of a temporal logic by
which requirements can be formally analysed and the necessary software functionality derived
from the analysis results.

The explanations are copious. Three excellent running examples, drawn from very different
kinds of system, illuminate detailed points at every level. Each chapter includes exercises to
help the reader check that what has been read has also been understood, and often to stimulate
further thought about deeper issues that the chapter has recognized and discussed. Readers
who are practising requirements engineers will find the book an excellent source for learning
or recapitulating effective approaches to particular concerns. To take one example, there is
an incisive discussion —to be found in a section of Chapter 16 — of the task of evaluating
alternative architectures and how to set about it. Another example is the crisp account of
temporal logic, given in a few pages in the following chapter. This account is so clear and
well judged that it can act as both an introduction and a reference tool for all developers
who recognize the power and utility of the formalism and want to use it. The comprehensive

Foreword

bibliographical commentaries in every chapter map out the terrain of what has by now become
a substantial literature of the requirements engineering discipline.

The author’s friends and colleagues, who know him well, have been waiting for this book
with high expectations. These expectations have been amply fulfilled. Readers who have not
yet acquainted themselves deeply with the author’s work should begin here, immediately. They
will not be disappointed.

Michael Jackson,
The Open University and Newcastle University
February 2008

equirements Engineering (RE) is concerned with the elicitation, evaluation, specifica-
tion, analysis and evolution of the objectives, functionalities, qualities and constraints
to be achieved by a software-intensive system within some organizational or physical
environment.

The requirements problem has been with us for a long time. In their 1976 empirical study,
Bell and Thayer observed that inadequate, incomplete, inconsistent or ambiguous requirements
are numerous and have a critical impact on the quality of the resulting software. Noting this
for different kinds of projects, they concluded that ‘the requirements for a system do not arise
naturally; instead, they need to be engineered and have continuing review and revision’. Some
20 years later, different surveys over a wide variety of organizations and projects in the United
States and in Europe have confirmed the requirements problem on a much larger scale. Poor
requirements have been consistently recognized to be the major cause of software problems
such as cost overruns, delivery delays, failures to meet expectations or degradations in the
environment controlled by the software.

Numerous initiatives and actions have been taken to address the requirements problem.
Process improvement models, standards and quality norms have put better requirements
engineering practices in the foreground. An active research community has emerged with
dedicated conferences, workshops, working groups, networks and journals. Requirements
engineering courses have become integral parts of software engineering curricula.

The topic has also been addressed in multiple textbooks. These fall basically into two
classes. Some books introduce the requirements engineering process and discuss general
principles, guidelines and documentation formats. In general they remain at a fairly high level
of coverage. Other books address the use of modelling notations but are generally more focused
on modelling software designs. Where are such models coming from? How are they built?
What are their underlying requirements? How are such requirements elaborated, organized and
analysed? Design modelling books do not address such issues.

In contrast, this book is aimed at presenting a systematic approach to the engineering of
high-quality requirements documents. The approach covers the entire requirements lifecycle

Preface

and integrates state-of-the-art techniques for requirements elicitation, evaluation, specification,
analysis and evolution. Modelling plays a central role in this approach. Rich models provide
a common interface to the various requirements engineering activities. Such models capture
the multiple facets of the system as it is before the software project starts and as it should
be after project completion. Such a system generally comprises both software components,
pre-existing or to be developed, external devices and people playing specific roles. The book’s
main emphasis is on the technical aspects of the requirements engineering process; the socio-
psychological issues involved in that process are merely introduced together, with references
to dedicated books where such issues are covered in greater depth.

Organization and content

The book is structured in three parts:

e A comprehensive introduction to the fundamentals of requirements engineering (Chapters
1-7).

e A thorough treatment of system modelling in the specific context of engineering require-
ments (Chapters 8—15).

e A presentation of various forms of reasoning about system models for model build-
ing, analysis and exploitation, from semi-formal to qualitative to formal reasoning
(Chapters 6-18).

Part I of the book introduces the fundamental concepts, principles and techniques for
requirements engineering. It discusses the aim and scope of requirements engineering, the
products and processes involved, requirements qualities to aim at and flaws to avoid, the
critical role of requirements engineering in system and software engineering, and obstacles to
good requirements engineering practices. Key notions such as ‘requirement’, ‘domain property’
and ‘assumption’ are precisely defined. State-of-the-art techniques for supporting the various
activities in the requirements lifecycle are reviewed next.

e For requirements elicitation, techniques such as interviews, observation or group sessions
are based on different forms of interaction with system stakeholders. Other techniques
such as scenarios, prototypes or knowledge reuse are based on artefacts to help acquire
relevant information.

e For requirements evaluation, various techniques may help us manage conflicting con-
cerns, analyse potential risks, evaluate alternative options and prioritize requirements.

e For requirements documentation, a wide variety of techniques may help us specify
and structure large sets of requirements, from the use of structured natural language to
diagrammatic notations to formal specifications.

e For requirements quality assurance, we may conduct inspections and reviews, submit
queries to a requirements database, validate requirements through animation or verify
requirements through formal checks.

Preface

e For requirements evolution, various techniques are available for change anticipation,
traceability management, change control and on-the-fly change at system runtime.

To conclude the first part of the book and introduce the next parts, goal orientation is put
forward as a basic paradigm for requirements engineering. Key elements such as goals, agents
and scenarios are defined precisely and related to each other.

Part IT is devoted to system modelling in the specific context of engineering require-
ments. It presents a goal-oriented, multiview modelling framework integrating complementary
techniques for modelling the system-as-is and the system-to-be.

e AND/OR goal diagrams are used for capturing alternative refinements of functional and
non-functional objectives, requirements and assumptions about the system.

e AND/OR obstacle diagrams are used for modelling what could go wrong with the system
as modelled, with the aim of deriving new requirements for a more robust system. This
view is especially important for mission-critical systems where safety or security concerns
are essential.

e UML class diagrams are used for defining and structuring the conceptual objects manipu-
lated by the system and referred to in goal formulations.

e Agent diagrams are used for modelling active system components, such as people playing
specific roles, devices and software components, together with their responsibilities and
interfaces.

e Operationalization diagrams and UML use cases are used for modelling and specifying
the system’s operations so as to meet the system'’s goals.

e UML sequence diagrams and state diagrams are used for modelling the desired system
behaviours in terms of scenarios and state machines, respectively.

Each modelling technique is explained separately first, with a strong emphasis on well-
grounded heuristics for model building. The full system model is obtained from those various
views through mechanisms for view integration.

To conclude the second part of the book, a constructive method is presented for elaborating
a full, robust and consistent system model through incremental integration of the goal, object,
agent, operation and behaviour sub-models. Goals and scenarios drive the elaboration and
integration of these sub-models. The elaboration proceeds both top down, from strategic
objectives, and bottom up, from operational material available. The requirements document
is then generated systematically by mapping the resulting model into some textual format
annotated with figures. The document produced preserves the goal-oriented structure and
content of the model, and fits prescribed standards if required.

The model-based requirements engineering approach described in Part 11, known as KAOS,
has been developed and refined over more than 15 years of research, tool development and
experience in multiple industrial projects. KAOS stands for ‘Keep All Objectives Satisfied’.
(Kaos happens to be the name of an allegorical movie by the Taviani brothers based on Luigi
Pirandello’s five tales on the multiple facets of our world.)

xxiv Preface

Part III reviews goal-based reasoning techniques that support the various steps of this
requirements engineering approach. The transition from requirements to software architecture
is discussed as well. The analysis techniques fall into three complementary classes:

e Query-based techniques can be used for checking model well-formedness, for managing
traceability among model items, and for retrieving reusable model fragments.

e Qualitative and quantitative techniques help evaluate alternative options arising during
the requirements engineering process. Such options correspond to alternative goal
refinements, responsibility assignments, conflict resolutions or countermeasures to the
identified hazards or threats. The evaluation of options is based on the non-functional
goals identified in the goal model. ’

e Formal techniques can be used incrementally and locally, where and when needed,
to support goal refinement and operationalization, conflict management, analysis of
obstacles to goal achievement, analysis of security threats for countermeasure exploration,
synthesis of behaviour models, and goal-oriented model checking and animation. Such
techniques require the corresponding goals, operations and domain properties to be
specified formally.

Approach

The book presents both a comprehensive state of the art in requirements engineering (Part 1)
and a systematic method for engineering high-quality requirements (Parts I and I1D), anchored
on this state of the art.

Like the method and supporting tools, this book is ‘two-button’ in nature. The material
covering formal methods for requirements engineering is optional and is concentrated near
the end of the book; the ‘formal button’ is mostly pressed in Chapters 17 and 18. Formal
techniques are useful in requirements engineering to enforce higher precision in specifications
and to support much richer forms of analysis for requirements quality assurance. They turn
out to be essential for reasoning about critical goals concerning system safety and security.
Formal techniques are, however, mostly hidden from Chapters 1 to 16, even though they are
to some extent involved at different places here and there. The aim is to make solid modelling
techniques more accessible to a much wider audience. For example, formal refinement patterns
are seen in Chapter 18 to produce goal refinements that are provably correct and complete
(Section 18.1). They are introduced informally in Chapter 8 to support the critical task of
refining goals in a systematic way (see the model-building heuristics in Section 8.8). Similarly,
obstacle analysis is handled formally in Chapter 18 but introduced informally in Chapter 9.
Extensive experience with students, tutorial attendees and practitioners over the years shows
that this way of hiding the underlying mathematical apparatus works remarkably well. Like
Moliere’s Monsieur Jourdain, who is writing prose without being aware of it, they are using
temporal logic without really knowing it.

On the other hand, other readers with some background in formal methods might be
interested in a more formal treatment of model-based RE from the beginning. Such readers can

Preface

press the ‘formal button’ earlier, as they will have no difficulty in making the hidden formal
apparatus visible. The semi-formal techniques and numerous examples presented in Parts II
and IIT can easily be translated into the simple formalism based on temporal logic introduced
in Section 4.4.2 and further detailed in Chapter 17.

Unlike many books consisting of a mere exposition of a catalogue of notations and
illustrations of their use, this book puts a strong emphasis on constructive techniques for
building high-quality system models using a coherent subset of notations. A rich variety
of heuristic rules is provided that combines model-building strategies, tactics and patterns,
common pitfalls and bad smells. Much more than specific notations, what matters here is the
quality and usefulness of the models and documents elaborated, and the process according
to which such artefacts are built. Experience in teaching modelling for more than 20 years to
students and practitioners has convinced us that effective guidance in model building is what
is needed most — in the same way as good programming methods, techniques and patterns are
known to be much more important than the use of a specific programming language.

Speaking of notations, we will use standard ones wherever we can. In particular, we will see
how UML class diagrams, use cases, sequence diagrams and state diagrams can be systematically
derived from goal models, and vice versa. The only new notations introduced in the book refer
to abstractions that are crucially missing in the UML for requirements engineering; namely, goal
diagrams, obstacle diagrams and context diagrams.

The concepts, principles and techniques throughout the book are illustrated by numerous
examples from case studies to give the reader more concrete insights into how they can be
used in practical settings. The wide applicability of the techniques is demonstrated through
running examples from completely different domains: an information system, an embedded
control system and a distributed collaborative application to be developed as a product family.
These running examples arise from simplifications of real systems for library management,
train control and meeting scheduling, respectively. The method is also shown in action in
the stepwise elaboration of an entire multi-view model of a mine safety control system. The
requirements document generated semi-automatically from the latter model is shown in the
book’s accompanying website.

For more active reading, each chapter ends with a series of exercises, problems and
bibliographical notes. Some of the exercises provide additional case studies for more sub-
stantial experimentation, in particular in student projects. The bibliographical notes are
intended to open the window on past achievements in the field and directions for further
study.

A professional modelling tool that supports the goal-oriented RE method in this book is
freely accessible to the reader for building limited-size models and requirements documents
(http://www.objectiver.com). The tool includes, among other components, a graphical model
editor, an HTML generator for navigation and zooming in/out through large models, a
model database query engine with pre-defined model consistency checks, and a requirements
document generator. The book does not assume that the reader will use this tool. However,
playing with it for building models involved in the book’s exercises and case studies, and
generating requirements documents semi-automatically from the models, will result in more

Preface

active and enjoyable learning. As a side effect, further insight will be gained on the benefits of
using tools for requirements engineering.

Readership

The book is primarily intended for two categories of reader:

e Students in computing science, information systems or system engineering who need
a solid background in techniques for requirements engineering and system mod-
elling — typically, final-year undergraduate or first-year graduate students who take a
course on software engineering or a more dedicated course on requirements engineer-
ing or system modelling. The book can be used as a supplement to other textbooks
for a course on software engineering, or as main support for a one-term course on
requirements engineering or system modelling.

e Professional engineers, business analysts, system analysts, consultants or project leaders
who, beyond general guidelines, need systematic guidance for elaborating and analysing
high-quality requirements.

Parts 1 and II, covering the fundamentals of requirements engineering and model building,
have no real prerequisite. The more advanced techniques in Part III, and Chapters 17 and 18
in particular, assume some elementary background in the logical foundations of computing
science together with more analytical reasoning skills.

How to use the book

Part |
Fundamentals

Part Il
Modelling

Part Ill
Reasoning

Reading graph

The material in the book has been organised to meet different needs. Multiple tracks can
therefore be followed corresponding to different selections of topics and levels of study. Such
tracks define specific paths in the book’s reading graph. Arrows in this graph denote reading
precedence, whereas dotted circles indicate partial reading of the corresponding chapter by
skipping some sections.

o Track 1: Model-free introduction to RE. Part I of the book can be used for an RE course
with very little modelling. Along this track, students are expected to follow or have fol-
lowed another course on system modelling. Section 4.3 is provided to summarize popular

Preface

modelling notations for RE, defining each of them concisely, highlighting their comple-
mentarity and illustrating their use in the running case studies. Optionally, Section 4.4 on
formal specification and Section 5.4 on formal verification may be skipped for shorter
courses or students with no background in the logical foundations of computing.

Track 2: Model-based introduction to RE. This track is intended for an RE course with
substantial coverage of modelling techniques, The material in Part I up to Section 4.2
is taken. Section 4.3 is provided as a contextual entry point to subsequent chapters
emphasizing model construction. Section 4.4 (formal specification), Chapter 5 (require-
ments inspection, validation and verification) and/or Chapter 6 (requirements evolution)
are skipped depending on course length or reader focus. The track then proceeds with
Chapter 7 and key chapters from Part I; namely, Chapter 8 on goal modelling, Chapter 10
on object modelling, Chapter 12 on operation modelling and Chapter 15 showing how
the techniques introduced in these chapters fit together to form a systematic model-
building method. Ideally, Chapters 9, 11 and 13 should be included as well to cover risk,
responsibility and behaviour models.

Track 3: Introduction to early model building for model-driven software engineering. This
track is intended for the RE part of a software engineering course. (I used to follow it
for the first third of my SE course.) It consists of Chapter 1, introducing the basics of RE,
Chapter 7, introducing system modeling from a RE perspective, and then Chapters 8-13
on model building, concluded by Chapter 15 showing a fully worked-out case study. For
shorter coverage, Chapter 11 may be skipped, as key material there is briefly introduced
in Chapters 7, 8 and 10 and briefly recalled in Chapter 12.

Tracks 4.n: Hybrid RE tracks. Depending on student profile, teacher interests and
course length, multiple selections can be made out of Parts I and II so as to
cover essential aspects of RE and model-based RE. Chapter 1 is required in any
selection. Typical combinations include Chapter 1, Chapter 2, [Chapter 3], Chapter 4
limited to Sections 4.1 and 4.2, [Chapter 5], [Chapter 6], Chapter 7, Chapter 8, [Chapter 9],
Chapter 10, Chapter 12, [Chapter 13] and Chapter 15, where brackets indicate optional
chapters. (I have used such combinations on several occasions.)

Track 5: The look-abead formal track. Students with some background in formal methods
do not necessarily have to wait until Part I1I to see formal modelling and analysis in action.
They will have no difficulty making the material in Part II more formal by expressing the
specifications and patterns there in the temporal logic language introduced in Section 4.4
and detailed in Chapter 17.

Track 6: The advanced track. A more advanced course on RE, for students who have
had an introductory course before, can put more emphasis on analysis and evolution
by in-depth coverage of the material in Chapter 3, Section 4.4 in Chapter 4, Chapter 5,
Chapter 6, Chapter 9 (if not covered before), Chapter 14, Chapter 16, Chapter 17 and
Chapter 18. This track obviously has prerequisites from preceding chapters.

Preface

Additional resources
Lecture slides, additional case studies, solutions to exercises and model-driven requirements
documents from real projects will gradually be made available on the book’s Web site.

Acknowledgement

I have wanted (and tried) to write this book for a long time. This means that quite a few people
have been involved in some way or another in the project.

My first thanks go to Emmanuel Letier. The book owes much to our joint work over
10 years. Emmanuel contributed significantly to some of the techniques described in Parts
I and III, notably the techniques for agent-based refinement and goal operationalization. In
addition to that, he created initial models and specifications for several case studies, examples
and exercises in the book. Emmanuel was also instrumental in making some of the pillars of
the modelling framework more solid.

Robert Darimont deserves special thanks too. He initiated the refinement pattern idea and
provided initial insights on goal conflicts. Later he gave lots of feedback from his daily use of the
method and supporting tools in industry. This feedback had a large influence on enhancements,
notably through considerable simplification and polishing of the original framework.

Speaking of the original framework, Steve Fickas and Martin Feather had a strong influence
on it through their work on composite system design. I still believe that Martin's simple but
precise semantics for agent responsibility is the one to rely on.

Many people joined the research staff in the KAOS project and contributed in some way
or another. I wish to thank in particular Christophe Damas, Anne Dardenne, Renaud De
Landtsheer, Bruno Delcourt, Emmanuelle Delor, Francoise Dubisy, Bernard Lambeau, Philippe
Massonet, Cédric Neve, Christophe Ponsard, André Rifaut, Jean-Luc Roussel, Marie-Claire
Schayes, Hung Tran Van and Laurent Willemet.

Quite a few students provided valuable feedback from using some of the techniques in their
MS thesis or from studying draft chapters. I would like to acknowledge in particular Nicolas
Accardo, Pierre-Jean Fontaine, Olivier Haine, Laurent Hermoye, Jonathan Lewis, Florence
Massen, Junior F. Monfils, Alessandra de Schrynmakers and Damien Vanderveken.

Many thanks are also due to all those who provided helpful comments and suggestions on
earlier drafts of the book, including Alistair Suttcliffe, Klaus Pohl, Steve Fickas, Bill Robinson
and the Wiley reviewers. Martin Feather gave substantial feedback on my attempts to integrate
his DDP approach in the section on risk analysis. I am also very much indebted to Michael
Jackson for taking time to read the manuscript and write such a nice foreword.

Earlier colleagues at Philips Research Labs provided lifetime stimulation for technical
precision, highly needed in RE, including Michel Sintzoff, Philippe Delsarte and Pierre-Jacques
Courtois. Francois Bodart at the University of Namur opened a window on the area for me and
excited my attraction to real-world case studies.

Writing a book that in places tries to reconcile requirements engineering (RE) and formal
methods (FM) is quite a challenge. I am indebted to the many RE researchers and practitioners
I met for their scepticism about formal methods, and to the many FM researchers I met for their
scepticism about RE as a respectable area of work. Their combined scepticism contributed a
great deal to the never-ending quest for the Holy Grail.

Preface

Besides the multiple laptops and typesetting systems I used during the painful process of
book writing, T would like to acknowledge my cellos and Johann Sebastian Bach’s genial suites,
which helped me a great deal in recovering from that pain.

Last but not least, the real thanks go to Dominique for her unbounded patience and
endurance through years and years — she would most probably have written this sort of book
three times faster; to Nicolas, Florence and Céline for making me look ahead and for joking
about book completion on every occasion; and to Agathe, Inés, Jeanne, Nathan, Louis and
Nina for reminding me constantly that the main thing in life cannot be found in books.

