Proceedings of the
2007 ACM SIGPLAN
- Symposium
on Principles and Practice
of Parallel Programming

i

AT {1551

Sponsored by

Proceedings of the
2007 ACM SIGPLAN
Symposium
n Principles and Practice
of Parallel Programming

PPoPP’07

Sponsored by

@ SIGPLAN

The Association for Computing Machinery
2 Penn Plaza, Suite 701
New York, New York 10121-0710

Copyright © 2007 by the Association for Computing Machinery, Inc. (ACM). Permission to make digital
or hard copies of portions of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyright for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or <permissions@acm.org>.

For other copying of articles that carry a code at the bottom of the first or last page, copying is permitted
provided that the per-copy fee indicated in the code is paid through the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923.

Notice to Past Authors of ACM-Published Articles

ACM intends to create a complete electronic archive of all articles and/or other material previously
published by ACM. If you have written a work that has been previously published by ACM in any journal
or conference proceedings prior to 1978, or any SIG Newsletter at any time, and you do NOT want this
work to appear in the ACM Digital Library, please inform permissions@acm.org, stating the title of the
work, the author(s), and where and when published.

ISBN: 978-1-59593-602-8

Additional copies may be ordered prepaid from:

ACM Order Department
PO Box 11405
New York, NY 10286-1405

Phone: 1-800-342-6626
(US and Canada)
+1-212-626-0500

(all other countries)

Fax: +1-212-944-1318
E-mail: acmhelp@acm.org

ACM Order Number 551070
Printed in the USA

ii

Foreword

It is our pleasure to welcome you to the 12® 4CM Symposium on Principles and Practice of Parallel
Programming (PPoPP’07). This past year has been an exciting one for the field. The abrupt switch
to multi-core designs for commeodity microprocessors has transformed parallel computing from a
fringe technology to one on the critical path for the success of products ranging from game consoles
to supercomputers. The road ahead is full of challenges with increasing interest in heterogeneous
architectures and the impending arrival of many-core microprocessors. The mission of this
symposium is to serve as a forum for presenting new ideas ranging from the theoretical foundations
of parallel programming, to programming models, algorithms, and software for parallel systems.
PPoPP provides researchers and practitioners an opportunity to share their diverse perspectives.

The call for papers attracted 65 submissions from Asia, Europe, North America, and South America.
The program committee accepted 22 papers on topics ranging from theory to practice. This year,
PPoPP includes a poster session whose aim is to broaden participation and increase the exchange of
ideas without sacrificing the symposium’s single-track format. The program also includes keynote
speeches by Jesse Fang and Andrew Chien, along with a panel on transactions moderated by
Maurice Herlihy. For the first time, PPoPP 07 includes companion workshops that provide an
opportunity to learn about topics in greater depth. We hope that you find the program thought
provoking and that you value the symposium as an opportunity to exchange ideas with colleagues
from institutions around the world.

Putting together PPoPP’07 was a team effort. Most importantly, we thank the paper and poster
authors, keynote speakers, panelists, and workshop presenters for contributing the intellectual
content of the program. We are grateful for the dedication of the program committee and external
reviewers, who carefully read submissions and provided suggestions for improving them. We thank
Costin Iancu, our Workshops Chair and Local Arrangements Co-chair, Yeen Mankin, our other
Local Arrangements Co-chair, Parry Husbands, our Finance and Registration Chair, and John Hules,
our Publicity and Web Chair; their efforts have been vital to making the symposium a success. We
thank Google, IBM, Lawrence Berkeley National Laboratory, and Microsoft Research for their
support of the symposium. Finally, we thank our sponsor, ACM SIGPLAN, for their continued
support.

Katherine Yelick John Mellor-Crummey

PPoPP’07 General Chair PPoPP’07 Program Chair
UC Berkeley & Lawrence Berkeley National Laboratory ~ Rice University

iii

PPoPP 2007 Symposium Organization

General Chair: Katherine Yelick (UC Berkeley and Lawrence Berkeley National Lab., USA)

Program Chair: John Mellor-Crummey (Rice University, USA)
Workshops Chair: Costin lancu (Lawrence Berkeley National Laboratory, USA)

Local Arrangements Co-Chairs: Costin lancu (Lawrence Berkeley National Laboratory, USA)
Yeen Mankin (Lawrence Berkeley National Laboratory, USA)

Publicity and Web Chair: John A. Hules (Lawrence Berkeley National Laboratory, USA)
Finance and Registration Chair: Parry Husbands (Lawrence Berkeley National Laboratory, USA)
Steering Committee Chair: Keshav Pingali (University of Texas, USA)

Steering Committee: Siddhartha Chatterjee, (/BM, US4)
Rudoph Eigenmann (Purdue University, USA4)
Martin Rinard (MIT, USA)
Josep Totrellas (University of lllinois at Urbana-Champaign, USA)
Katherine Yelick (UC Berkeley and Lawrence Berkeley National Lab., USA)

Program Committee: Eduard Ayguadé (Universitat Politécnica de Catalunya, Spain)
David Callahan (Microsoft, USA)
Barbara Chapman (University of Houston, USA)
Siddhartha Chatterjee, (/BM, USA)
Albert Cohen, (INRIA Futurs, France)
Maurice Herlihy (Brown University, USA)
Laxmikant Kale (University of lllinois at Urbana-Champaign, USA4)
Sanjeev Kumar (Intel, USA)
David Lowenthal (The University of Georgia, USA)
Ewing Lusk (4rgonne National Laboratory, USA)
P. Sadayappan (The Ohio State University, USA)
Michael L. Scott (University of Rochester, USA)
Lauren L. Smith (Department of Defense, USA)
Robert A. van de Geijn, (University of Texas, USA)
Rich Wolski (University of California, Santa Barbara, US4)
Hans Zima (JPL California Inst. of Tech. & Univ. of Vienna, Austria)

Additional reviewers: Gheorghe Almasi Sayantan Chakravorty
Hansang Bae Michael Classen
Muthu Baskaran Julita Corbalan
Cedric Bastoul Toni Cortes
Viceng Beltran Adrian Cristal
Raobert L. Bocchino David Detlefs
Uday Bondhugula Yuri Dotsenko
Ivona Brandic Guy Eddon
Peter Brezany Cormac Flanagan
Paul Carpenter Xiaoyang Gao

John Cavazos Maria J. Garzaran

ix

Additional reviewers (continued):

Joydeep Ghosh
Martin Griebl
Christoph Herrmann
Guohua Jin

Mike Kistler

Sriram Krishnamoorthy
Qingda Lu

Xavier Martorell
Eduard Mehofer
Celso L. Mendes

Jace A Mogill
Dimitris Nikolopoulos
Kalyan Perumalla
Keshav Pingali

Sebastian Pop

J. Ramanujam

Faisal Saied

Wolfram Schulte
Osman Unsal

William N. Scherer 111
Sadia Sharif

Dawvid Skillicorn
Andrei Terechko

Rob F. Van der Wijngaart
Nicolas Vasilache
Terry L. Wilmarth
Emmett Witchel
Yuan Zhao

. @) STIGPLAN

Supporters:

~Ny
freorees Im

N“’ﬁiosoft’ I
Google

Table of Contents

PPoPP 2007 Symposium Orgamization ...
SPONSOY & SUPPOTLETS..........ooonooeeeececeecmmnerssmsinsssssssssiens s sssssssres s sssss s ssssssss s ssss s siss s

Joint CGO-PPoPP Keynote Talk
Chair: A. Adl-Tabatabai (Intel Corporation)

® Parallel Programming Environment: A Key to Translating

Tera-scale Platforms into a BIg SUCCESS...........ccccoviiiiiiiiiiimiiicc e

I. Fang (Intel Corporation)

Session 1: Parallel Applications
Session Chair: P. Sadayappan (Ohio State University)

e Toward Terabyte Pattern Mining: An Architecture-conscious Solution
G. Buehrer, S. Parthasarathy, S. Tatikonda, T. Kure, J. Saltz (The Ohio State University)

e Expressing and Exploiting Concurrency in Networked Applications with Aspen
G. Upadhyaya, V. S. Pai, S. P. Midkiff (Purdue University)

¢ DiSenS: Scalable Distributed Sensor Network Simulation
Y. Wen, R. Wolski, G. Moore (University of California at Santa Barbara)

Session 2: Communication
Session Chair: L. L. Smith (US Department of Defense)

e Optimizing Communication Overlap for High-Speed Networks ..o,

C. lancu, E. Strohmaier (Lawrence Berkeley National Laboratory)

® On using Connection-Oriented vs. Connection-Less Transport for Performance

and Scalability of Collective and One-sided Operations: Trade-offs and Impact..........................

A.R. Mamidala, S. Narravula, A. Vishnu, G. Santhanaraman, D. K. Panda (The Ohio State University)

Panel
Chair: M. Herlihy (Brown University)

e Potential Show-Stoppers for Transactional Synchronizationccocvvviniiiiiiiniinninninn,

A.-R. Ad)-Tabatabai (Intel Corporation), D. Dice (Sun Microsystems),
N. Shavit (Sun Microsystems), M. Herlihy (Brown University), C. Kozyrakis (Stanford University),
C. von Praun (IBM Research), M. Scott (University of Rochester)

Session 3: Transactional Approaches
Session Chair: S. Chatterjee (IBM T.J. Watson Research Center)

0 TranSactional Collection CIASSESocovvieeiiieeririeeiireetre e s sitereestaeeessseresssssessssaesssseasasstessasseaerssnnss

B. D. Carlstrom, A. McDonald, M. Carbin, C. Kozyrakis, K. Olukotun (Stanford University)

¢ Open Nesting in Software Transactional Memory
Y. Ni, V. Menon, A.-R. Adl-Tabatabai (Intel Corporation), A. L. Hosking (Purdue University),
R. L. Hudson (Intel Corporation), J. E. B. Moss (University of Massachusetts),
B. Saha, T. Shpeisman (Intel Corporation)

e Implicit Parallelism with Ordered Transactions ...,

C. von Praun (IBM T.J. Watson Research Center), L. Ceze (University of lllinois at Urbana-Champaign),
C. Cagcaval (IBM T.J. Watson Research Center)

...

Session 4: Accelerators
Session Chair: A. Cohen (INRIA Futurs)

Dynamic Multigrain Parallelization on the Cell Broadband Engine ... 90
F. Blagojevic, D. S. Nikolopoulos (Virginia Tech.), A. Stamatakis (Ecole Polytechnique),
C. D. Antonopoulos (College of William and Mary)

Automatic Mapping of Nested Loops to FPGAS.............coccoviiiccreeseceneet e ese s 101
U. Bondhugula (The Ohio State University), J. Ramanujam (Louisiana State University),
P. Sadayappan (The Ohio State University),

Session 5: Adaptive Parallelism

Session Chair: S. Kumar (Intel Corporation)

Adaptive Work Stealing with Parallelisin Feedback...............c.ooiecinnniinercsenvesiecesnsneninonn 112
K. Agrawa, Y. He, C. E. Leiserson (Massachusetts Institute of Technology)

Self-Adaptive Applications on the GIid ... eassees et e e 121
G. Wrzesinska, J. Maassen, H. E. Bal (Vrije Universiteit Amsterdam)

Poster Session

Latency Hiding through Multithreading on a Network Processor................cooceevvvneenrccinnccenneenn, 130
X. Guo, J. Dai, L. Li, Z. Lv (Intel Asia-Pacific Research & Development Ltd.),
P. R. Chandra (Intel Corporation)

Alert-on-Update: A Communication Aid for Shared Memory Multiprocessors............ccooveeeennnnn. 132
M. F, Spear, A. Shriraman, H. Hossain, S. Dwarkadas, M. L. Scott (University of Rochester)

Featherweight Transactions: Decoupling Threads and Atomic Blocks............ccocecevvvveenniiiercnnennn, 134
V. J. Marathe (University of Rochester), T. Harris, J. R. Larus (Microsoft Research)

Efficient Nonblocking Software Transactional MemoOryc.ccocoeveirennnenrnenennnnrenennnsnseressenes 136
V. J. Marathe (University of Rochester), M. Moit (Sun Microsystems Laboratories)

Conservative vs. Optimistic Parallelization of Stateful Network Intrusion Detection 138
D. L. Schuff, Y. R. Choe, V. 8. Pai (Purdue University)

Adaptive Structured Parallelism for Computational Grids.................occoceeniniicinnniinnreceee e 140
H. Gonzalez-Vélez, M. Cole (University of Edinburgh)

Fault Detection in Multi-Threaded C++ Server Applications..............cccoovevriinerecnnnescennisnesernnns 142
A. Miihlenfeld, F. Wotawa (Graz University of Technology)

MCSTL: The Multi-Core Standard Template LIbrary ... 144
F. Putze, P. Sanders, J. Singler (Universitit Karlsruhe)

Optimized Lock Assignment and Allocation:

A Method for Exploiting Concurrency among Critical Sections..............ccococorvvirccriinmccrvnnnisierecinns 146
Y. Zhang (University of Delaware), V. C. Sreedhar (IBM T.J. Watson Research Center),

W. Zhu (University of Delaware), V. Satkar (IBM T.J. Watson Research Center),

G. R. Gao (University of Delaware)

Performance Evaluation of the Cray XT3 Configured with Dual Core Opteron Processors........... 148
R.F. Barrett, S. R. Alam, J. S. Vetter (Oak Ridge National Laboratory)

Locality-Aware Connection Management and Rank Assignment for Wide-Area MPI.................... 150
H. Saito, K. Taura (University of Tokyo)

Speculations: Providing Fault-tolerance and Improving Performance

of Parallel APPLCALIONScooirriiii ettt ettt et e s et s s et es e saesnatenan 152
C. Tapus, J. Hickey (California Institute of Technology)

vi

Promised Messages: Recovering from Inconsistent Global Statescoovniiiiiniinnniiinnnn 154
F. Baude, D. Caromel, C. Delbé, L. Henrio (INRIA4 - CNRS Univ. Nice-Sophia Antipolis)

Supporting Fault-Tolerance in Streaming Grid Applicationsccvccoiirirmnicinriiniiseennnniinonnes 156
Q. Zhy, L. Chen, G. Agrawal (Ohio State University)

A Study of Tracing Overhead on a High-Performance Linux Cluster...............cccooiiviineninccnninnnnn. 158
K. Mohror, K. L. Karavanic (Portland State University)

Keynote Talk

Session Chair: J. Mellor-Crummey (Rice University)

Pervasive Parallel Computing — An Historic Opportunity
for Innovation in Programming and Architecturec..coocovvocoiniirrienvncciniiiieeeis i 160
A. A. Chien (Intel Corporation)

Session 6: Memory Models and Concurrency Analysis
Session Chair: K. Yelick (University of California at Berkeley/LBNL)

A Theory of Memory Models ... e e e b e s n e e s 161
V. Saraswat (IBM T.J. Watson Research Center), R. Jagadeesan (DePaul University),
M. Michael, C. von Praun (IBM T.J. Watson Research Center)

Reordering Constraints for Pthread-Style Locksccvinininnminisn e, 173
H.-J. Boehm (HP Laboratories)

May-Happen-in-Parallel Analysis of X10 Programs................cccconniinnninmnniicinenee e 183
S. Agarwal (Tata Institute of Fundamental Research), R. Barik (IBM India Research Laboratory),
V. Sarkar (IBM T.J. Watson Research Center), R. K. Shyamasundar (IBM India Research Laboratory)

Barrier Matching for Programs with Textually Unaligned Barriers.............ccoovveininininienennn, 194
Y. Zhang (University of Delaware), E. Duesterwald (IBM T.J. Watson Research Center)

Session 7: Thread-level Speculation
Session Chair: V. Sarkar (IBM T. J. Watson Research Center)

Speculative Thread Decomposition Through Empirical Optimizationcc.oooovovvevcnincvnncnnnnne 205
T. A. Johnson, R. Eigenmann, T. N. Vijaykumar (Purdue University)

Tight Analysis of the Performance Potential of Thread Speculation using SPEC CPU 2006........... 215
A. Kejariwal (University of California at Irvine),

X. Tian, M. Girkar, W. Li, H. Saito, U. Banerjee (Intel Corporation),

A. Nicolau, A. V. Veidenbaum (University of California at Irvine),

C. D. Polychronopoulos (University of lllinois at Urbana-Champaign),

Session 8: Compilation, Performance, and Energy
Session Chair: D. Lowenthal (University of Georgia)

Compilation for Explicitly Managed Memory Hierarchies................cccoooooivieiciiiniiinniienencnninns 226
T. J. Knight, J. Y. Park, M. Ren, M. Houston, M. Erez, K. Fatahalian, A. Aiken,
W. J. Dally, P. Hanrahan (Stanford University)

The Z-Polyhedral MOAEL...........ccocoviviirenniereeeieiniseinnsenssretesarassssassensaesestsssssasssest st sistessasssesssesessssunsasancass 237
Gautam, S. Rajopadhye (Colorado State University)

Methods of Inference and Learning for Performance Modeling of Parallel Applications................ 249
B. C. Lee, D. M. Brooks (Harvard University),

B. R. de Supinski, M. Schulz (Lawrence Livermore National Laboratory),

K. Singh, S. A. McKee (Cornell University)

Using Fine Grain Multithreading for Energy Efficient Computing...............ccccovinvniincvicnnnnnnnerens 259

A. Gontmakher (Technion, Israel Institute of Technology),
A. Mendelson (Intel Mobility Group), A. Schuster (Technion, Israel Institute of Technology),

vii

Workshoeps

e Programming with Cluster OpenMP ..ot s sressss e 270
J. Hoeflinger (Intel Corporation)

¢ X10: Concurrent Programming for Modern Architectures.............ccccoooomnininnniin 271
V. Saraswat, V. Sarkar, C. von Praun (IBM T.J. Watson Research Center)

® Transactional Programming in a Multi-core Environmentcc.ccoovniiccenneccneccneninnnenne 272
A.-R. Adl-Tabatabai (Intel Corporation), C. Kozyrakis (Standord University),
B. Saha (Intel Corporation)

AUTROT IIMACX ...t et re e et ee e e et eeeemsee e eseres st seasreasen s ene et ennesesenereenen 273

viii

Keynote Talk

Parallel Programming Environment: A Key to
Translating Tera-scale Platforms into a Big Success

Jesse Fang
Director of the Programming Systems Lab
Intel Corporation
jesse.z.fang@intel.com

Abstract

Moore’s Law will continue to increase the number of transistors
on die for a couple of decades, as silicon technology moves from
65nm today to 45nm, 32 nm and 22nm in the future. Since power
and thermal constraints increase with frequency, multi-core or
many-core microprocessors will be the way of the future. In the
near future, hardware platforms will have sixteen or more cores
on die to achieve more than one Tera Instructions Per second
(T1Ps) computation power. These cores will communicate each
other through an on-die interconnect fabric with more than one
TB/s on-die bandwidth and less than 30 cycles latency. Off-die
D-cache will employ 3D stacked memory technology to
tremendously increase off-die cache/memory bandwidth and
reduce the latency. Fast copper flex cables will link CPFU-DRAM
on socket and optical silicon photonics will provide up to one
Tb/s T/O bandwidth between boxes. The hardware system with
TIPs of compute power operating on terabytes of data make this a
“tera-scale” platform. What are the software implications with the
hardware changes from uniprocessor to tera-scale platform with
many cores as “the way of the future?” It will be a great challenge
for programming environments to help programmers develop
concurrent code for most client software. A good concurrent
programming environment should extend existing programming
languages that typical programmers are familiar with, and bring
benefits for concurrent programming. There are many research
topics. Examples topics include flexible parallel programming
models based on needs from applications, better synchronization
mechanisms such as Transactional Memory to replace simple
“Thread + Lock” structure, nested data parallel language
primitives with new protocols, fine-grained synchronization
mechanisms with hardware support, maybe fine-grained message

passing, advanced compiler optimizations for the threaded code,
and software tools in the concurrent programming environment.
A more interesting problem is how to use such a many-core
system to improve single-threaded performance.

Categories & Subject Descriptors C.1 Computer Systems
Organization.Processor Architectures D.1 Software. Programming
Techniques, D.2 Software. Programming Languages, and D.3
Software.Software Engineering,

General Terms Design, Performance, Languages.

Bio

Jesse Fang is Director and Chief Scientist of Programming
System Lab at Intel/CTG (Corp. Technology Group). Jesse
created the lab about 11 years ago, and has been leading the lab to
develop programming environment technologies to enable Intel
hardware microarchitecture research and microprocessor design,
and to transfer SW technologies to Intel’s Software Solution
Group. Before joining Intel in 1995, Jesse was manager of
Hewlett-Packet Research Lab compiler team that initiated the
Itanium Architecture in 1991. Jesse ran a small start-up between
working at HP and Intel. Before HP Labs, Jesse was working as
manager or technical leader on parallel/vector compilers at
Convex and Concurrent Computer Corporation, Respectively, in
1989 and 1986. Jesse Fang got his Ph.D. in Computer Science at
University of Nebraska-Lincoln before he did a post-Doctorate at
University of Illinois Urbana-Champaign. He was Assistant
Professor at Wichita State University at Kansas before moving to
industry. Jesse got his B.S. in Math at Fudan University in
Shanghai.

Copyright is held by the author/owner(s).
PPoPP'07 March 14-17, 2007, San Jose, California, USA,
ACM 978-1-59593-602-8/07/0003.

Toward Terabyte Pattern Mining

An Architecture-conscious Solution

Gregory Buehrer

The Ohio State University
buehrer@cse.ohio-state.edu

Tahsin Kurc

The Ohio State University
kurc@bmi.chio-state.edu

Abstract

We present a strategy for mining frequent itemsets from
terabyte-scale data sets on cluster systems. The algorithm
embraces the holistic notion of architecture-conscious data
mining, taking into account the capabilities of the proces-
sor, the memory hierarchy and the available network in-
terconnects. Optimizations have been designed for lower-
ing communication costs using compressed data structures
and a succinct encoding. Optimizations for improving cache,
memory and I/O utilization using pruning and tiling tech-
niques, and smart data placement strategies are also em-
ployed. We leverage the extended memory space and com-
putational resources of a distributed message-passing cluster
to design a scalable solution, where each node can extend
its meta structures beyond main memory by leveraging 64-
bit architecture support. Our solution strategy is presented in
the context of FPGrowth, a well-studied and rather efficient
frequent pattern mining algorithm. Results demonstrate that
the proposed strategy result in near-linear scaleup on up to
48 nodes.

Categories and Subject Descriptors H.2.8 [Database Man-
agement]: Database Applications - Data Mining

General Terms Algorithms, Performance

Keywords itemset mining, data mining, parallel, out of
core

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’07 March 14-17, 2007, San Jose, California, USA.
Copyright © 2007 ACM 978-1-59593-602-8/07/0003. .. $5.00

Srinivasan Parthasarathy

The Ohio State University
srini@cse.ohio-state.edu

Shirish Tatikonda

The Ohio State University
tatikond@cse.ohio-state.edu

Joel Saltz

The Ohio State University
saltz@bmi.ohio-state.edu

1. Introduction

“Data mining, also popularly referred to as knowledge dis-
covery from data (KDD), is the automated or convenient
extraction of patterns representing knowledge implicitly
stored or catchable in large data sets, data warchouses, the
Web, (and) other massive information repositories or data
streams” [14]. This statement, from a popular textbook, and
its variants resound in numerous articles published over the
last decade in the field of data mining and knowledge discov-
ery. As a field, one of the emphasis points has been on the de-
velopment of mining techniques that can scale to truly large
data sets (ranging from hundreds of gigabytes to terabytes in
size). Applications requiring such techniques abound, rang-
ing from analyzing large transactional data to mining ge-
nomic and proteomic data, from analyzing the astronomical
data produced by the Sloan Sky Survey to analyzing the data
produced from massive simulation runs.

However, mining truly large data is extremely challeng-
ing. As implicit evidence, consider the fact that while a large
percent of the papers describing data mining techniques of-
ten include a statement similar to the one quoted above, a
small fraction actually mine large data sets. In many cases,
the data set fits in main memory. There are several reasons
why mining large data is particularly daunting. First, many
data mining algorithms are computationally complex and of-
ten scale non-linearly with the size of the data set (even if the
data can fit in memory). Second, when the data sets are large,
the algorithms become I/Q bound. Third, the data sets and
the meta data structures employed may exceed disk capacity
of a single machine.

A natural cost-effective solution to this problem that sev-
eral researchers have taken [2, 9, 13, 19, 20, 27] is to par-
allelize such algorithms on commodity clusters to take ad-
vantage of distributed computing power, aggregate memory
and disk space, and parallel /O capabilities. However, to
date none of these approaches have been shown to scale

to terabyte-sized data sets. Moreover, as has been recently
shown, many of these algorithms are greatly under-utilizing
modern hardware[11]. Finally, many of these algorithms rely
on multiple database scans and oftentimes transfer subsets of
the data around repeatedly.

In this work, we focus on the relatively mature problem
domain of frequent itemset mining{1]. Frequent itemset min-
ing is the process of enumerating all subsets of items in a
transactional database which occur in at least a minimum
number of transactions. It is the precursor phase to associ-
ation rule mining, first defined by Agrawal and Srikant[3].
Frequent itemset mining also plays an important role in min-
ing correlations [5], causality [24], sequential patterns [4],
episodes [17], and emerging patterns [10].

Our solution embraces one of the fastest known sequen-
tial algorithms (FPGrowth), and extends it to work in a paral-
lel setting, utilizing all available resources efficiently. In par-
ticular, our solution relies on an algorithmic design strategy
that is cache-, memory-, disk- and network- conscious, em-
bodying the comprehensive notion of architecture-conscious
data mining[6, 11]. Our solution is placed in the context of a
cache- and I/O-conscious frequent pattern mining algorithm
recently developed, which has been shown to be be efficient
on large data sets.

A highlight of our parallel solution is that we only scan
the data set twice, whereas all existing parallel implemen-
tations based on the well-known Apriori algorithm [4] re-
quire a number of data set scans proportional to the cardi-
nality of the largest frequent itemset. The sequential algo-
rithm targeted in this work makes use of tree structures to
efficiently search and prune the space of itemsets. Trees are
generally not readily efficient, when local trees have to be
exchanged among processors, because of the pointer-based
nature of tree structure imptementations. We devise a mech-
anism for efficient serialization and merging of local trees
called strip-marshaling and merging, to allow each node to
make global decisions as to which itemsets are frequent. Our
approach minimizes synchronization between nodes, while
also reducing the data set size required at each node. Finally,
our strategy is able to address situations where the meta data
does not fit in core, a key limitation of existing parallel algo-
rithms based on the pattern growth paradigm[9].

Through empirical evaluation, we illustrate the effective-
ness of the proposed optimizations. Strip marshaling of the
local trees into succinct encoding affords a significant re-
duction in communication costs, when compared to passing
the data set. In addition, local tree pruning reduces the data
structure at each node by a factor of up to 14-fold on 48
nodes. Finally, our overall execution times are an order of
magnitude faster than existing solutions, such as CD, DD,
IDD and HD.

2. Challenges

In this section, we first present challenges associated with
itemset mining of large data sets in a parallel setting. The
frequent pattern mining problem was first formulated by
Agrawal et al. [1] for association rule mining. Briefly, the
problem description is as follows: Let I = {i1,42, -+ ,in}
be a set of n items, and let D = {T},T5,--- ,T,,} be a set
of m transactions, where each transaction Tj is a subset of
I. Anitemset i C I of size k is known as a k-itemset. The
support of 4 is Z;’;l(l : 4 C Ty), or informally speaking,
the number of transactions in [that have ¢ as a subset. The
frequent pattern mining problem is to find all ¢ € D with
support greater than a minimum value, minsupp.

In most parallel algorithms, the data set D=D; U Dy U
w.UDp, D;N D;=0, i # j, is distributed or partitioned over
n machines. Each partition D; is a set of transactions. An
itemset that is globally frequent must be locally frequent in at
least one D;. Also, an itemset not frequent in any D, cannot
be globally frequent, and an itemset locally frequent in ali D;
must be globally frequent. The goal of the parallel itemset
mining problem is to mine for set of all frequent itemsets
in a data set that is distributed over different machines.
Several fundamental challenges must be addressed when
mining itemsets on such platforms.

2.1 Computational Complexity

The complexity of itemset mining primarily arises from the
exponential (over the set of items) size of the itemset lattice.
In a parallel setting, each machine operates on a small local
partition to reduce the time spent in computation. However,
since the data set is distributed, global decision making (e.g.,
computing the support of an itemset) becomes a difficult
task. Each machine must spend time communicating the
partially mined information with other machines. One needs
to devise algorithms that will achieve load balance among
machines while minimizing inter-machine communication
overheads.

2.2 Communication Costs

The time spent in communication can vary significantly de-
pending on the type of information communicated; data,
counts, itemsets, or meta-structures. Also, the degree of syn-
chronization required can vary greatly. For example, one of
the optimizations to speed up frequent itemset mining algo-
rithms is to eliminate candidates which are infrequent.The
method by which candidates are eliminated is called search
space pruning. Breadth-first algorithms prune infrequent
itemsets at each level. Depth-first algorithms eliminate can-
didates when the data structure is projected. Each projection
has an associated context, which is the parent itemset.
‘When the data is distributed across several machines, can-
didate elimination and support counting operations require
inter-machine communication since a global decision must
be reached to determine result sets. There are two fundamen-

tal approaches for reaching a global decision. First, one can
communicate all the needed data, and then compute asyn-
chronously; An alternate strategy is to communicate knowl-
edge after every step of computation. In the former strategy,
each machine sends its local portion of the input data set
to all the other machines. While this approach minimizes
the number of inter-machine communications, it can suffer
from high communication overhead when the number of ma-
chines and the size of the input data set are large. The com-
munication cost increases with the number of machines due
to the broadcast of the large data set. In addition to communi-
cation overhead, this approach scales poorly in terms of disk
storage space. Each machine requires sufficient disk space to
store the aggregated input data set. For extremely large data
sets, full data redundancy may not be feasible. Even when it
is feasible, the execution cost of exchanging the entire data
set may be too high to make it a practical approach.

In the latter strategy, each machine computes local data
and a merge operation is performed to obtain global support
counts. Such communication is carried out after every level
of the mining process. The advantage of this approach is that
it scales well with increasing processors, since the global
merge operation can be carried out in O(N), where N is the
size of the global count array. However, it has the potential to
incur a high communication overhead because of the number
of communication operations and large message sizes. As
the candidate set size increases, this approach might become
prohibitively expensive.

Clearly there are trade-offs between these two different
approaches. Algorithm designers must compromise between
approaches that copy local data globally, and approaches
which retrieve information from remote machines as needed.
Hybrid approaches may be developed in order to exploit the
benefits from both strategies.

2.3 L/O Costs

When mining very large data sets, care should also be taken
to reduce I/O overheads. Many data structures used in item-
set mining algorithms have sizes proportional to the size
of the data set. With very large data sets, these structures
can potentially exceed the available main memory, result-
ing in page faults. As a result, the performance of the al-
gorithm may degrade significantly. When large, out-of-core
data structures need to be maintained, the degree of this
degradation is in part a function of the temporal and spa-
tial locality of the algorithm. The size of meta-structures can
be reduced by maintaining less information. Therefore, al-
gorithms should be redesigned to keep the meta-structures
from exceeding the main memory by reorganizing the com-
putation or by redesigning the data structures [11].

2.4 Load Imbalance

Another issue in parallel data mining is to achieve good com-
putational load balance among the machines in the system.
Even if the input data set is evenly distributed among ma-

Sorted Transaction
with Frequent Items

a‘1clf|m1p

No. Transaction

f7 a7c7d7g1 iimip

1

2 a,b,c, f,l,m,0 a,c, f,b,m
3 b, f,h,j,0 £, b

4 b, e, k,s,p ¢, b, p

5 a,f&,evlap,m:n a,c,f,m,p
6 a, k a

Table 1. A transaction data set with minsup = 3

chines or replicated on each machine, the computational load
of generating candidates may not be evenly distributed. As
the data mining process progresses, the number of candi-
dates handled by a machine may be (significantly) different
from that of other machines. One approach to achieve load
balanced distribution of computation is to look at the dis-
tribution of frequent itemsets in a sub-sampled version of
the input data set. A disadvantage of this approach is that
it introduces overhead because of the sub-sampling of the
input data set and mining of the sub-sampled data set. An-
other approach is to dynamically redistribute computations
for candidate generation and support counting among ma-
chines when computation load imbalance exceeds a thresh-
old. This method is likely to achieve better load balance, but
it introduces overhead associated with redistributing the re-
quired data.

Parallel itemset mining offers trade-offs among computa-
tion, communication, synchronization, memory usage, and
also the use of domain-specific information, In the next sec-
tion, we describe our parallelization approach and its associ-
ated optimizations.

3. FPGrowth in Serial

FPGrowth proposed by Han et al [15] is a state-of-the-art
algorithm frequent itemset miner. It draws inspiration from
Eclat [26] in various aspects. Both algorithms build meta-
structures in two database scans. They both traverse of the
search space in depth-first manner, and employ a pattern-
growth approach. We briefly describe FPGrowth, since it is
the algorithm upon which we base our parallelization.

The algorithm summarizes the data set in the form of a
prefix tree, called an FPTree. Each node of the tree stores an
item label and a count, where the count represents the num-
ber of transactions which contain all the items in the path
from the root node to the current node. By ordering items in
a transaction based on their frequency in the data set, a high
degree of overlap is established, reducing the size of the tree.
FPGrowth can prune the search space very efficiently and
can handle the problem of skewness by projecting the data
set during the mining process.

A prefix tree is constructed as follows. The algorithm
first scans the data set to produce a list of frequent 1-items.
These items are then sorted in frequency descending order.
Following this step, the transactions are sorted based on the
order from the second step. Then, infrequent 1-items are
pruned away. Finally, for each transaction, the algorithm

NODE FIELDS

ITEM
COUNT

CHILD POINTER
NEXT PQINTER
SIBLING POINTER
PARENT POINTER

HEADER TABLE

ITEM | HEAD OF NODE LINKS

o9 8 oo

Figure 1. An FP-tree/prefix tree

inserts each of its items into a tree, in sequential order,
generating new nodes when a node with the appropriate label
is not found, and incrementing the count of existing nodes
otherwise,

Table 1 shows a sample data set, and Figure 1 shows the
corresponding tree. Each node in the tree consists of an item,
a count, a nodelink ptr (which points to the next item in the
tree with the same item-id), and child ptrs (a list of pointers
to all its children). Pointers to the first occurrence of each
item in the tree are stored in a header table.

The frequency count for an itemset, say ca, is computed
as follows. First, each occurrence of item c in the tree is de-
termined using the node link pointers. Next, for each occur-
rence of ¢, the tree is traversed in a bottom up fashion in
search of an occurrence of a. The count for itemset ca is
then the sum of counts for each node c in the tree that has a
as an ancestor.

4. Parallel Optimizations

In this work, we target a distributed-memory parallel archi-
tecture, where each node has one or more local disks and
data exchange among the nodes is done through message
passing. The input data set is evenly partitioned across the
nodes in the system. We first present our optimizations, and
then in Section 4.5 we discuss how these optimizations are
combined in the parallel implementation.

4.1 Minimizing Communication Costs

One of the fundamental challenges in parallel frequent item-
set mining is that global knowledge is required to prove an
itemset is not frequent. It can be shown that if an itemset
is locally frequent or infrequent in every partition, then it
is globally frequent or infrequent, respectively. However, in
practice, most itemsets lie in between; they are locally fre-
quent in a nonempty proper subset of the partitions and infre-
quent in the remaining partitions. These itemsets must have

their exact support counts from each partition summed for a
decision to be made. In Apriori-style algorithms, this is not
an additional constraint, because this information is present.
Aprioti maintains exact counts for each potentially frequent
candidate at each level. However, FPGrowrh discards infre-
quent itemsets when projecting the data set.

It is too expensive for a node to maintain the count in-
formation so that it can be retrieved by another node. This
would equate to mining the data set at a support of one.
Alternatively, synchronizing at every pass of every projec-
tion of each equivalence class is also excessive. Our solution
is for each machine to communicate its local FPTree to all
other machines using a ring broadcast protocol. That is, each
node receives an FPTree from its left neighbor in a ring or-
ganization, merges the received tree with its local FPTree,
and passes the tree received from its left neighbor to its right
neighbor.

Exchanging the FPTree structure reduces communication
overhead because the tree is typically much smaller than the
frequent data set (due to transaction overlap). To further re-
duce the volume of communication, instead of communi-
cating the original tree, each processor transfers a concise
encoding, a process we term strip marshaling. The tree is
represented as a array of integers. To compute the array (or
encoding), the tree is traversed in depth first order, and the
label of each tree node is appended to the array in the or-
der it is visited. Then, for each step back up the tree, the
negative of the support of that node is also added. We use
the negative of the support so that when decoding the ar-
ray, it can be determined which integers are tree node labels
and which integers are support values. Naturally, we again
negate the support value upon decoding, so that the original
support value is used.

This encoding has two desired effects. First, the encoded
tree is significantly smaller than the entire tree, since each
tree node can be represented by two integers only. Typi-
cally, FPTree nodes are 48 bytes, but the encoding requires
only 8 bytes, resulting in a 6-fold reduction in size. Second
and more importantly, because the encoded representation
of the tree is in depth-first order, each node can traverse
its local tree and add necessary nodes online. Thus, merg-
ing the encoded tree into the existing local tree is efficient,
as it only requires one traversal of the each tree. When the
tree node exists in the encoding but not in the local tree, we
add it to the local tree (with the associated count); other-
wise we add the received count (or support) to the existing
tree node in the local tree. Because the processing of the
encoded tree is efficient, we can effectively overlap commu-
nication with processing. Also, transferring these succinct
structures dispatches our synchronization requirements. The
global knowledge afforded allows each machine to subse-
quently process all its assigned tasks independently.

For example, Figure 2 illustrates the tree encoding for the
tree from our example in Section 2. Note that the labels of

ENCODING (RELABELED): 1,2,3,56,-2,-24.5,~1-1.-3.-34.~1,~-4.24.6—1,-1,~1

Figure 2. Strip Marshaling the FPTree provides a succinct
representation for communication.

the tree nodes are recoded as integers after the first scan of
the input data set.

4.2 Pruning Redundant Data

Although the prefix tree representation (FPTree) for the pro-
jected data set is typically quite concise, there is not a guar-
anteed compression ratio with this data structure. In rare
cases, the size of the tree can meet or exceed the size of the
input data set. A large data set may not fit on the disk of a
single machine. To alleviate this concern, we prune the lo-
cal prefix tree of unnecessary data. Specifically, each node
maintains the portion of the FPTree required to mine the
itemsets assigned to that node.

Recall that to mine an item ¢ in the FPTree, the algorithm
traverses every path from any occurrence of i in the tree up
to the root of the tree. These upward traversals form the
projected data set for that item, which is used to construct
anew FPTree. Thus, to correctly mine ¢ only the nodes from
occurrences of ¢ to the root are required.

Let the items assigned to machine M be [. Consider any
i € I, and let n; be a node in the FPTree with its label.
Suppose a particular path P in the tree of length £ is

P = (nl,n27...,ni,ni+1,...,nk). ¢))

To correctly mine item %, only the portion of P from n; to
n; is required for correctness. Therefore, for every path P
in the FPTree, M may delete all nodes n; occurring after
n;. This is because the deleted items will never be used in
any projection made by M. In practice, M can start at every
leaf in the tree, and delete all nodes from n; to the first
occurrence of any item ¢ € I assigned to M. M simply
evaluates this condition on the strip marshaled tree as it
arrives, removing unnecessary nodes.

As an example, we return to the FPTree described in Sec-
tion 2. Assume we adopt a round-robin assignment function,
so machine M is assigned all items ¢ such that

i % |Cluster] = rank(M). (2)

We illustrate the local tree for each of the four machines
in Figure 3. A nice property of this scheme is that as we

increase the number of machines in the cluster, we increase
the amount of pruning available.

4.3 Partitioning the Mining Process

We determine the mapping of tasks to machines before any
mining occurs. Researchers[9] have shown that intelligent
allocation can in this fashion can lead to efficient load bal-
ancing with low process idle times, in particular with FP-
Growth. We leverage such sampling techniques to assign
frequent-one items to machines after the first parallel scan
of the data set.

4.4 Memory Hierarchy-conscious Mining

Local tree pruning lowers the required main memory re-
quirements. However, it may still be the case that the size of
the tree exceeds main memory. In such cases, mining the tree
can incur page faults. To remedy this issue, we incorporate
several optimizations to improve the performance. Through
detailed studies, we discovered that locality improvements
in both the tree building process, and the subsequent mining
process lead to improved execution times for large data sets
[6].

Designers of OS paging mechanisms work under the as-
sumption that programs will exhibit good locality, and store
recently accessed data in main memory accordingly. There-
fore, it is imperative that we find any existing temporal local-
ity and restructure computation to exploit it. Further details
of the following procedures are available elsewhere [6, 11].

4.4.1 Improving the Tree Building Process

The initial step in FPGrowth is to construct a prefix tree.
For out-of-core data sets, construction of the first tree results
in severe performance degradation. If the first tree does not
fit in main memory, the algorithm can spend up to 90% of
the execution time building it. The reason is that transac-
tions are in the database in random order, which results in
random access to the tree nodes during construction, and ex-
cessive page faulting. To solve this problem, we incorporate
domain knowledge and the frequency information collected
in the first scan to intelligently place the frequent transac-
tions into a partition of blocks. Each block is implemented
as a separate file on disk. The hashing algorithm guarantees
that each transaction in block; sorts before all transactions in
block;1, and the maximum size of a block is no larger than
a preset threshold. By blocking the frequent data set, we can
build the tree on disk in fixed chunks. A block as well as the
portion of the tree being updated by the block will fit in main
memory during tree construction, reducing page faults con-
siderably. In short, transactions with the most frequent items
are allocated a larger portion of the partition. Further details
are available in a prior publication[6].

4.4.2 Improving the Mining Process

Mining the large tree results in significant page faulting be-
cause for any two connected nodes, it is unlikely that they

, c
(T
\‘i‘i jg(X \@
B & X
CL) }i@{ @\ d)
5:27) \\@ 52 ﬁ(

) 5 X

X

. zéz
X E K

Figure 3. Each node stores a partially overlapping subtree of the global tree.

are near each other in memory. We improve spatial local-
ity by reallocating the tree in virtual memory, such that the
new tree allocation is in depth-first order. We malloc() fixed
sized blocks of memory, whose sum is equal to the total size
of the tree. Next, we traverse the tree in depth-first order,
and (in one pass) copy each node to the next location (in
sequential order) in the newly allocated blocks of virtual
memory. This simple reallocation strategy provides signif-
icant improvements, because FPGrowth accesses the prefix
tree many times in a bottom up fashion, which is primarily a
depth-first order of the tree.

Finally, to improve temporal locality while accessing the
tree, we tile paths of the tree. Our approach relies on page
blocking, and is analogous to our tiling techniques for im-
proving temporal locality in in-core pattern mining algo-
rithms. Since each tree is traversed once for each frequent
item at that projection, we can walk a small percentage of
the tree paths for each item, before continuing to the next set
of paths. This improves the probability that the paths will be
in cache.

4.5 Putting It All Together: Architecture-conscious
Data Mining

We now use the optimizations above to construct our solu-
tion. The approach is shown in Algorithm 1, and we label it
DFP (Distributed FPGrowth).

The machines are logically structured in a ring. In phase
one (lines 1 - 5), each machine scans its local data set to re-
trieve the counts for each item. Each machine then sends its
count array to its right-neighbor in the ring, and receives the
counts from its left neighbor. This communication continues
n-1 times until each count array has been witnessed by each
machine. The machines then perform a voting procedure to
statically assign frequent-one items to particular nodes. The
mechanism for voting is designed to minimize load imbal-
ance.

In phase two (lines 6 - 12), each machine builds a prefix
tree of its local data set using the global counts derived from
phase 1. Then, each machine encodes the tree as an array of
integers. These arrays are circulated in a ring manner, as was
performed with the count array. Since each machine requires
only a subset of the total data to mine its assigned elements,

upon receiving the array the local machine incorporates only
the contextually pertinent parts of the array into its local tree
before passing it to its right-neighbor.

In phase three (lines 13 - 14), each machine indepen-
dently mines its assigned items. No synchronization between
machines is required during the mining process. The results
are then aggregated.

Algorithm 1 DFP
Imput: Data set D=D{ U ... U D,,, Global Support o
Output: F = Set of frequent itemsets
: for each node i=1 to n do
Scan D; for item frequencies, LF;
end for
Aggregate LFj, i=1..n (using a ring)
Assign itemsets to nodes
for each node i=1 to n do
Scan the D; to build a local Prefix Tree, T;
Encode 7; as an array, S;
Prune T; of unneeded data
end for
: Distribute S;, i=1..n (using a ring)
and build a pruned global tree at each node
. Locally mine the pruned global tree
. Aggregate the final results (using a ring)

R A O SR v

—_ e = = e

5. Experiments

We implement our optimizations in C++ and MPI. The test
cluster has 64 machines connected via Infiniband, 48 of
which are available to us. Each compute machine has two
64-bit AMD Opteron 250 single core processors, 2 RAID-0
250GB SATA hard drives, 8GB of RAM, and runs the Linux
Operating System. We are afforded 100GB (per machine)
of the available disk space. For this work, we only use one
of the two available processors. All synthetic data sets were
created with the IBM Quest generator, with 100,000 distinct
items, an average pattern length of 8, and 100,000 patterns.
Other settings were defaults. The number of transactions
varies depending on the experiment, and will be expressed
herein. Our main data set is 1.1 terabytes, distributed over
48 machines (24GB each), called 1TB. The real data sets we

