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PREFACE

Valuations are among the fundamental structures of number theory and of
algebraic geometry. This was recognized early by model theorists, with grati-
fying results: Robinson’s description [45] of algebraically closed valued fields
as the model completion of the theory of valued fields; the Ax-Kochen, Ershov
study of Henselian fields of large residue characteristic with the application
to Artin’s conjecture [1, 2. 3, 10]: work of Denef and others on integration;
and work of Macintyre, Delon. Prestel, Roquette, Kuhlmann, and others on
p-adic fields and positive characteristic. The model theory of valued fields is
thus one of the most established and deepest areas of the subject.

However, precisely because of the complexity of valued fields, much of
the work centers on quantifier elimination and basic properties of formulas.
Few tools are available for a more structural model-theoretic analysis. This
contrasts with the situation for the classical model complete theories, of alge-
braically closed and real closed fields, where stability theory and o-minimality
make possible a study of the category of definable sets. Consider for instance
the statement that fields interpretable over C are finite or algebraically closed.
Quantifier elimination by itself is of little use in proving this statement. One
uses instead the notion of w-stability; it is preserved under interpretation,
implies a chain condition on definable subgroups, and. by a theorem of Mac-
intyre. w-stable fields are algebraically closed. With more analysis, using
notions such as generic types, one can show that indeed every interpretable
field is finite or definably isomorphic to C itself. This method can be extended
to differential and difference fields. Using a combination of such methods
and of ideas of manifolds and Lie groups in a definable setting, Pillay was
able to prove similar results for fields definable over R or Q,. But just a step
beyond. a description of interpretable fields seems out of reach of the classical
methods. When p-adic or valuative geometry enters in an essential way, an
intrinsic analog of the notion of generic type becomes necessary.

For another example, take the notion of connectedness. In stability, no
topology is given in advance, but one manages to define stationarity of types
or connectedness of definable groups, by looking at the type space. In o-
minimality. natural topologies on definable sets exist, and connectedness,
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defined in terms of definable paths, is a central notion. In valued fields, the
valuation topology is analogous to the o-minimal order topology. and one has
the linearly ordered value group that may serve as the domain of a path: but
every continuous definable map from the value group to the field is constant,
and a model-theoretic definition of connectedness is missing. The lack of such
structural model-theoretic understanding of valued fields is a central obstacle
to a wider interaction of model theory with geometry in general.

It is this gap that the present monograph is intended to address. We suggest
an approach with two components. We identify a certain subset of the type
space, the set of stably dominated types. that behaves in many ways like the
types in a stable theory. Since these types are not literally stable. it is necessary
to first describe abstractly an extension of stability theory that includes them.
Secondly. we note the existence of o-minimal families of stably dominated
types and show, at least over sufficiently rich bases, that any type can be
viewed as a limit of such a family. This requires imaginaries in a concrete
form, serving as canonical bases of stably dominated types. and a theory of
definable maps from I into such sets of imaginaries. Thus, whereas type
spaces work best in stable theories. and definable sets and maps in o-minimal
theories, we suggest here an approach mixing the two. As both the method and
the intended applications depend heavily on imaginary elements, we develop
some techniques for dealing with them, including prime models that often
allow a canonical passage from imaginary to real bases.

We work throughout with the model completion, algebraically closed valued
fields. This is analogous to Weil’s program of understanding geometry first at
the level of algebraic closure. One can hope that the geometry of other valued
fields could also, with additional work, be elucidated by this approach. As an
example of this viewpoint, consider the known elimination of quantifiers for
Henselian fields of residue characteristic zero, relative to the value group and
residue field. This was originally derived as an independent theorem. But it
is also an immediate consequence of a fact about algebraically closed valued
fields of characteristic zero, namely that over any subfield F. any F-definable
set is definably isomorphic to pullbacks of definable subsets of the residue
field and value group. See [19] for more details on this short argument. It is
also noted there that definable sets in F” can be fibered over the residue field
and value group in fibers that are ACVF-definable. and a similar statement
for definable bijections between them can be made. Another example is the
elimination of imaginaries for Q,. proved in [20] using the ACVF methods of
invariant types. We illustrate the phenomenon in Chapter 16 using the theory
of C(1).

We restrict ourselves in this monograph to laying the foundations of this
approach. Definable maps from I' into imaginaries were described in [12]: we
concentrate here on the theory of stable domination. Only future work based
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on these foundations can show to what extent they are successful. We note here
that Pillay has defined an analogue of stable domination, compact domination,
that appears to be useful for thinking about o-minimal groups (cf. [21]). Some
progress has been made with the analysis of definable groups using the present
methods: a notion of metastability has been abstracted (Definition 4.11), and
results obtained for Abelian groups in a general metastable setting, and linear
groups interpretable in ACVF; see [15]. And in very recent work of one of the
authors with Loeser, connections with the Berkovich theory of rigid analytic
spaces are beginning to emerge.
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CHAPTER 1

INTRODUCTION

As developed in [49]. stability theory is based on the notion of an invariant type,
more specifically a definable type, and the closely related theory of independence
of substructures. We will review the definitions in Chapter 2 below; suffice it
to recall here that an (absolutely) invariant type gives a recipe yielding, for
any substructure 4 of any model of T, a type p|A4, in a way that respects
elementary maps between substructures; in general one relativizes to a set C
of parameters, and considers only 4 containing C. Stability arose in response
to questions in pure model theory, but has also provided effective tools for the
analysis of algebraic and geometric structures. The theories of algebraically
and differentially closed fields are stable, and the stability-theoretic analysis of
types in these theories provides considerable information about algebraic and
differential-algebraic varieties. The model companion of the theory of fields
with an automorphism is not quite stable, but satisfies the related hypothesis
of simplicity: in an adapted form, the theory of independence remains valid
and has served well in applications to difference fields and definable sets over
them. On the other hand, such tools have played a rather limited role, so far,
in o-minimality and its applications to real geometry.

Where do valued fields lie? Classically, local fields are viewed as closely
analogous to the real numbers. We take a “geometric” point of view however,
in the sense of Weil, and adopt the model completion as the setting for our
study. This is Robinson’s theory ACVF of algebraically closed valued fields.
We will view valued fields as substructures of models of ACVE. Moreover,
we admit other substructures involving imaginary elements, notably codes for
lattices: these have been classified in [12]. This will be essential not only for
increasing the strength of the statements, but even for formulating our basic
definitions.

A glance at ACVF reveals immediately a stable part, the residue field k; and
an o-minimal part, the value group I'. Both are stably embedded, and have
the induced structure of an algebraically closed field. and an ordered divisible
abelian group, respectively. But they amount between them to a small part
of the theory. For instance, over the uncountable field Q,, the residue field
has only finitely many definable points, and both k£ and I" are countable in the

1



2 1. INTRODUCTION

model Q. As observed by Thomas Scanlon [46]. ACVF is not stable over I',
in the sense of [48].

We seek to show nevertheless that stability-theoretic ideas can play a sig-
nificant role in the description of valued fields. To this end we undertake two
logically independent but mutually motivating endeavors. In Part I we intro-
duce an extension of stability theory. We consider theories that have a stable
part, define the notion of a stably dominated type, and study its properties. The
idea is that a type can be controlled by a very small part, lying in the stable part:
by analogy, (but it is more than an analogy). a power series is controlled, with
respect to the question of invertibility for instance, by its constant coefficient.
Given a large model I/ and a set of parameters C from U, we define St¢ to
be a many-sorted structure whose sorts are the C-definable stably embedded
stable subsets of the universe. The basic relations of St¢ are those given by
C-definable relations of /. Then St (A4) (the stable part of A4) is the definable
closure of 4 in Stc. We write 4 J/‘éB if Stc(A) | Stc(B) in the stable struc-
ture Stc and tp(B/C Stc(A4)) + tp(B/CA), and say that tp(4/C) is stably
dominated if, for all B, whenever St¢(A4) | Stc(B). we have 4 J/‘éB. In this
case tp(A4/ acl(C)) lifts uniquely to an Aut(// acl(C))-invariant type p. Base-
change results (under an extra assumption of existence of invariant extensions
of types) show that if p is also Aut(i// acl(C’))-invariant then p|C’ is stably
dominated; hence, under this assumption, stable domination is in fact a prop-
erty of this invariant type, and not of the particular base set. We formulate
a general notion of domination-equivalence of invariant types (2.2). In these
terms, an invariant type is stably dominated iff it is domination-equivalent to
a type of elements in a stable part Stc.

Essentially the whole forking calculus becomes available for stably domi-
nated types. Properties such as definability, symmetry, transitivity, charac-
terization in terms of dividing, lift easily from St¢ to \Ld. Others, notably
the descent part of base change, require more work and in fact an additional
assumption: that for any algebraically closed substructure C C M = T, any
type p over C extends to an Aut(M/C)-invariant type p’ over M.

We isolate a further property of definable types in stable theories. Two
functions are said to have the same germ relative to an invariant type p if they
agree generically on p. In the o-minimal context, an example of this is the
germ at oo of a function on R. Moving from the function to the germ one is
able to abstract away from the artifacts of a particular definition. In stability.
this is an essential substitute for a topology. For instance, if f is a function
into a sort D, one shows that the germ is internal to D; this need not be the
case for a code for the function itself. In many stable applications. the strength
of this procedure depends on the ability to reconstruct a representative of the
germ from the germ alone. We say that a germ is strong if this is the case.
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It is easy to see the importance of strong germs for the coding of imaginaries.
One wants to code a function; as a first approximation, code the germ of the
function; if the code is strong, one has succeeded in coding at least a (generic)
piece of the function in question. If it is not, one seems to have nothing at all.

We show that germs of stably dominated invariant types are always strong.
The proof depends on a combinatorial lemma saying that finite set functions
on pairs, with a certain triviality property on triangles, arise from a function
on singletons; in this sense it evokes a kind of primitive 2-cohomology, rather
as the fundamental combinatorial lemma behind simplicity has a feel of 2-
homology. Curiously, both can be proved using the fundamental lemma of
stability.

In [15] is is shown that stable domination works well with definable groups.
A group G is called generically metastable if it has a translation invariant
stably dominated definable type. In this case there exists a unique translation
invariant definable type: and the stable domination can be witnessed by a
definable homomorphism /#: G — H onto a connected stable definable group.
Conversely. given such a homomorphism 4, G is generically metastable iff the
fiber of 4 above a generic element of H is a complete type. Equivalently, for
any definable subset R of G, the set Y of elements y € H such that 77!(y)
is neither contained in, nor disjoint from R is a small set; no finite union of
translates of Y covers H. We show this in Theorem 6.13, again using strong
germs.

The general theory is at present developed locally, at the level of a single
type. It is necessary to say when we expect it to be meaningful globally. The
condition cannot be that every type be stably dominated; this would imply
stability. Instead we would like to say that uniformly definable families of
stably dominated types capture, in some sense, all types. Consider theories
with a distinguished predicate I', that we assume to be linearly ordered so as to
sharply distinguish it from the stable part. We define a theory to be metastable
over ' (Definition 4.11) if every type over an algebraically closed set extends
to an invariant type, and, over sufficiently rich base sets, every type falls into a
[-parameterized family of stably dominated types. We show that this notion
is preserved under passage to imaginary sorts.

The proviso of “sufficiently rich base set” is familiar from stability, where the
primary domination results are valid only over sufficiently saturated models;
a great deal of more technical work is then needed to obtain some of them
over arbitrary base. The saturation requirement (over “small” base sets) is
effective since types over a model are always based on a small set. In the
metastable context, more global conditions incompatible with stability are
preferred. This will be discussed for ACVF below.

For some purposes, extensions of the base are harmless and the theory can
be used directly. This is so for results asserting the existence of a canonical
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definable set or relation of some kind, since a posteriori the object in ques-
tion is defined without extra parameters. This occurred in the classification
of maps from I' in [12]. Another instance is in [15], where under certain
finiteness of rank assumptions, it is shown that a metastable Abelian group
is an extension of a group interpretable over I' by a definable direct limit of
generically metastable groups.

In Part II we study ACVF. This is a C-minimal theory, in the sense of
[35]. [13]: there exists a uniformly definable family of equivalence relations.
linearly ordered by refinement; their classes are referred to as (ultrametric)
balls; and any definable set (in 1-space) is a Boolean combination of balls. In
strongly minimal and o-minimal contexts, one often argues by induction on
dimension, fibering an n-dimensional set over an n — 1-dimensional set with
1-dimensional fibers, thus reducing many questions to the one-dimensional
case over parameters. This can also be done in the C-minimal context. Let
us call this procedure “dévissage”.

A difficulty arises: many such arguments require canonical parameters, not
available in the field sort alone. And certainly all our notions, from algebraic
closure to stable embeddedness, must be understood with imaginaries. The
imaginary sorts of ACVF were given concrete form in [12]: the spaces S,
of n-dimensional lattices, and certain spaces T, fibered over S, with fibers
isomorphic to finite dimensional vector spaces over the residue field. But
though concrete, these are not in any sense one-dimensional: attempting to
reduce complexity by induction on the number of coordinates only leads to
subsets of S,,. which is hardly simpler than (S,)".

Luckily, S, itself admits a sequence of fibrations S, = Xy — Xy-_1 —

- — Xy, with X a point and such that the fibers of X;;; — X; are o-
or C-minimal. This uses the transitive action of the solvable group of upper
triangular matrices on S, ; see the paragraph following Proposition 7.14. There
is a similar statement for 7, (where strongly minimal fibers also occur.) It
follows that any definable set of imaginaries admits a sequence of fibrations
with successive fibers that are strongly, o- or C-minimal (“unary sets”), or
finite. Dévissage arguments are thus possible.

One result obtained this way is the existence of invariant extensions. A
type over a base set C can only have an invariant extension if it is stationary,
i.e., implies a complete type over acl(C). We show that in ACVF, every
stationary type over C has an Aut(//C)-invariant extension. For C-minimal
sets (including strongly minimal and o-minimal ones). there is a standard
choice of invariant extension: the extension avoiding balls of radius smaller
than necessary.

But this does not suffice to set up an induction, since for finite sets there
is no invariant extension at all. Thus a minimai step of induction consists of
finite covers of C-minimal sets, 1.e., with sets Y admitting a finite-to-one map
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n: Y — X.with X unary. This is quite typical of ACVF, and resembles alge-
braic geometry, where dévissage can reduce as far as curves but not to a single
variable. In the o-minimal case, by contrast, one can do induction on ambient
dimension, or the number of coordinates of a tuple; this explains much of the
more “elementary” feel of basic o-minimality vs. strong minimality.

The additional ingredient needed to obtain invariant extensions of types is
the stationarity lemma from [12], implying that if = admits a section over a
larger base, then it admits a section over acl(C). See Lemma 8.10. For the
theory ACF over a perfect field, stationarity corresponds to the notion of a
regular extension, and the stationarity lemma to the existence of a geometric
notion of irreducibility of varieties. It is instructive to recall the proof for
ACVF. Given a finite cover 7: Y — X as above, a section s of Y will have a
strong germ with respect to the canonical invariant extension of any type of X
Generic types of closed balls are stably dominated; for these, by the results of
Part I, all functions have strong germs. Other types are viewed as limits of
definable maps from I into the space of generics of closed balls. For instance
if b is an open ball, consider the family of closed sub-balls b of b: these can
be indexed by their radius y € I' the moment one fixes a point in b: by the
stably dominated case. one has a section of 7 over each b. The classification
of definable maps from I" (actually from finite covers of I') is then used to
glue them into a single section, over the original base. This could be done
abstractly for C-minimal theories whose associated (local) linear orderings
satisfy dcl(I") = acl(I"). The proof of elimination of imaginaries itself has a
similar structure; see a sketch at the end of Chapter 15.

Another application of the unary decomposition is the existence of canon-
ical resolutions, or prime models. In the field sorts, ACVF has prime models
trivially; the prime model over a nontrivially valued field F is just the algebraic
closure F%2. In the geometric sorts the situation becomes more interesting.
The algebraic closure does not suffice, but we show that finitely generated
structures (or structures finitely generated over models) do admit canonical
prime models. A key point is that the prime model over a finitely generated
structure A4 add to 4 no elements of the residue field or value group. This is im-
portant in the theory of motivic integration: see the discussion of resolution in
[19]. A further application of canonical resolution is a quantifier-elimination
for C((¢)) in the G-sorts, relative to the value group I'. In essence resolution
is used to produce functions on imaginary sorts: in fact for any G-sort repre-
sented as X/E and any function /4 on X into the value group or residue field.
there exists a function H on X/E such that H (u) = h(x) for some x € X/E.

The construction of prime models combines the decomposition into unary
sets with the idea of opacity. An equivalence relation £ on X is called opaque
if any definable subset of X is a union of classes of E. up to a set contained
in finitely many classes. This is another manifestation of a recurring theme.
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Given f: X — Y and an ideal I on Y, we say X is dominated by Y via
(f.1) if for any subset R of X, for I-almost every y € Y, the fiber £ ~!(y) is
contained in R or is disjoint from it. For stable domination. Y is stable and /
is the forking ideal; for stationarity, f has finite fibers. and 7 is the dual ideal
to an invariant type; for opacity, I is the ideal of finite sets. The equivalence
relations associated with the analyses of S, and 7, above are opaque. For
an opaque equivalence relation, all elements in a non-algebraic class have the
same type (depending only on the class); this gives a way to choose elements in
such a non-algebraic class canonically up to isomorphism. Algebraic classes
are dealt with in another way.

We now discuss the appropriate notion of a “sufficiently rich” structure.
In the stable part, saturation is the right requirement; this will not actually
be felt in the present work. since the stable part is N;-categorical and does
not really need saturation. For the o-minimal part, a certain completeness
condition turns out to be useful: see Chapter 13.2. It allows the description
of the semi-group of invariant types up to domination-equivalence. and a
characterization of forking in ACVF over very rich bases. For the most part
however neither of these play any role; the significant condition is richness over
the stable and the o-minimal parts. Here we adopt Kaplansky’s maximally
complete fields. An algebraically closed valued is maximally complete if it has
no proper immmediate extensions. It follows from ([26], [27]) that any model
of ACVF embeds in a maximally complete field, uniquely up to isomorphism.
Since we use all the geometric sorts, a ‘rich base’ for us is a model of ACVF
whose field part is maximally complete.

Over such a base C. we prove first, using standard results on finite dimen-
sional vector spaces over maximally complete fields, that any field extension
F is dominated by its parts in the residue field k£ (F) and the value group ['r.
This kind of domination does not admit descent. A stronger statement is
that F is dominated by the stable part over C together with I'r. so that the
type of any element of F” over C U I'fr is stably dominated. After an alge-
braic interpretation of this statement, it is deduced from the previous one by
a perturbation argument. Both these results are then extended to imaginary
elements.

We interpret the last result as follows: an arbitrary type lies in a family
of stably dominated types, definably indexed by I". Note that & and I" play
asymmetric roles here. Indeed, at first approximation, we develop what can
be thought of as the model theory of k' rather than k x I". However k" is
presented by a I'-indexed system of opaque equivalence relations. each hiding
the structure on the finer ones until a specific class is chosen. This kind of
phenomenon, with hidden forms of k" given by finitely many nested equiv-
alence relations, is familiar from stability theory: the presence of a definable
directed system of levels is new here.
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Even for fields, the stable domination in the stronger statement cannot
be understood without imaginaries. Consider a field extension F of C; for
simplicity suppose the value group I'r of F is generated over I'c by one
element y. There is then a canonical vector space V, over the residue field. If
7 is viewed as a code for a closed ball E;, = {x: v(x) > y}, the elements of V,
can be taken to be codes for the maximal open sub-balls of E,. The vector
space V, lies in the stable part of the theory. over C(y). We show that F is
dominated over C(y) by elements of k(F) U V,(F). Note that k(F) may well
be empty.

Over arbitrary bases, invariant types orthogonal to the value group are
shown to be dominated by their stable part; this follows from existence of
invariant extensions, and descent.

At this point, we have the metastability of ACVF. We now seek to relate
this still somewhat abstract picture more directly with the geometry of valued
fields. We characterize the stably dominated types as those invariant types that
are orthogonal to the value group (Chapter 8.) In Chapter 14, we describe
geometrically the connection between a stably dominated type P and the
associated invariant type p, when P is contained in an algebraic variety V.
In the case of ACF, the invariant extension is obtained by avoiding all proper
subvarieties. In ACVF, the demand is not only to avoid but to stay as far
away as possible from any given subvariety. See Theorem 14.12. In ACF the
same prescription yields the unique invariant type of any definable set; it is not
necessary to pass through types. In ACVF the picture for general definable
sets is more complicated. But for a definable subgroup G of GL,(K), or for
a definable affine homogeneous space, we show that a translation invariant
stably dominated type is unique if it exists, and that in this case it is again
the type of elements of maximal distance from any proper subvariety of the
Zariski closure of G.

In chapter 15 the ideas are similar, but the focus is on canonical bases. Any
definable type, in general, has a smallest substructure over which it is defined.
In ACF. this is essentially the field of definition of the associated prime ideal.
We obtain a similar geometric description for stably dominated types; the
ideal of regular functions vanishing on the type is replaced by the R-module
of functions taking small values on it.

While presented here for stably dominated types. where the theory flows
smoothly from the main ideas, within the text we try to work with weaker
hypotheses on the types when possible. Over sufficiently rich base structures,
all our results can be read off from the main domination results discussed
above. But over smaller bases this is not always the case, leading us to think
that perhaps a general principle remains to be discovered. An example is the
theorem of Chapter 10, that an indiscernible sequence whose canonical base
(in an appropriate sense) is orthogonal to T, is in fact an indiscernible set, and



