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Foreword (added on April, 1971)

This is essentially a photographical reproduction of my Lecture-Notes
issued at the University of Chicago in 1967. Taking this opportunity of
revision, I tried to make it more readable, eliminating misprints and add-
ing a few foot-notes, a new bibliography, an index of terms, and a list of
notations. I also included an Appendix written by M. Sugiura of the
University of Tokyo, which gives a very efficient way of classifying real
simple algebraic groups in simplification of Araki's method. I should like
to express here my gratitude to Sugiura for this invaluable addition to my
Notes. My thanks are also due to S. Kobayashi, who invited me to join to
the new program of Marcel Dekker mathematics series, to a number of my
friends for their kind suggestions for improvements of the Notes, especially
to Mrs. Doris Schattschneider for her constant assistance, and finally to

Mrs. Laura Hurbace for her fine Job in typing these intricate materials.



Preface

These notes are based on my course on "Classification-theory of
seni~-simple algebraic groups" given at the University of Chicago in the
winter quarter of 1967. Though its primary aim was to give a general
idea of the classification-theory, I thought it convenient to include
an outline of the basic theory of algebraic groups, in view of the fact
that no standard textboock is as yet available. In this part, proofs
are often very sketchy, or completely omitted, but references are given
to indicate where a more complete proof is to be found. Thus it is
hoped that the graduate student with a sound background in algebra can
easily seize the main idea without going into too much detail.

I gratefully acknowledge my debt to Mrs. Doris Schattschneider who
kindly helped me in taking notes, reading proofs, and elaborating them
in the form presented here.

I. Satake
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I. PRELIMINARIES ON ALGEBRAIC GROUPS

This chapter is an exposition of definitions and known results.
The bibliographical references following theorems, or titles of sections
indicate where more details and proofs can be found. In a few instances,

a proof has been sketched here.
8l. Affine algebraic gets
1.1 Definitions ([L4] Chap. II and III; [1] Chap. I, §1)

Notation: () : universal domain (i.e., a sufficiently large algebraically
closed field)
_()N: N-dimensional affine space over ()
x= (xl,...,xN) = (xi): a point in Fo
Ox]= Q[xl,...,xN]: algebra of polynomials in N variables
with coefficients in ()

0(X): quotient field of ()[X].

Definition: A subset A c ()Y is called an (affine) algebraic set if
there exists a subset ML € ()[X] such that A = {xe _O_N | £(x) = 0 for
all £ e m} (A is denoted as A(M), the algebraic set determined by N;
we also write A < TMU).

Let A = AQTL) be an algebraic set, and put

a(a) = {£ e QLX) | £(x) =0 for all x € A}.

Clearly OL(A) is an ideal in ()[X], containing M. Since ()[X] is
Noetherian, there exists a finite set of polynomials fi,...,f  in ()[X]
which generate OL(A); then A = A(OL(A)) ='A(fl""’fr)' Thus the cor-
respondence between an algebraic set and its corresponding ideal OL(A)
is one-to-one; we will use the notation A €—> OU (OU = OL(4)).

It is easy to see that if A, and A, are algebraic sets in _O_N, with
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2
A4 €20l , &) <> 0L, then A, VU Ay <> 0L, N O,y and &) N A, <—
0L, + 0L, (¢—> does not hold for the latter). In general, if A <=
OLa’ @ running through any set of indices, then NA <— 2 oL, . Also,
if A and B are algebraic sets in .Q.N and _().M respectively, with A <> 0L
c Qx], B «<> b QIY], then AXB is an algebraic set in () deter-
mined by OLO)[Y] + % )[x].

Definition: An algebraic set is called irreducible if A = ‘A’l v A2 (A]_,A2
non-empty algebraic sets) implies A = Al or A,. (An irreducible algebraic
set is sometimes called a "variety.")

It follows from the remarks above that an algebraic set A is irre-
ducible if and only if OL(A) is a prime ideal. Also, every algebraic set
can be decomposed uniquely as a finite union of irreducible algebraic

sets:

n
A= U A,, A, irreducible (all i), and A, £ A, if 1 # j.
= 1 i i J

Now, let k be a subfield of (). If MU is a subset of ()[X], denote
m, =M xx].
Definition: An algebraic set A is k=closed if and only if there exists
a subset WL € K[X] such that & « M. (Equivalently, A = A(GL(A),).)

An algebraic set A is defined over k¥ (we write A/ k) if and only
if OU(A) has & basis in K{X], (Equivalently, OL(&) = oL(A), ®, (1.)

If A is defined over k, we say that k is a field of definition for
A, and A is sometimes called a "k-rational" algebraic set. It is clear
from the definition that if A is defined over k, then A is k=closed.
Definition: Let d be an automorphism of ﬂ, and A an algebraic set. The

conjugate of A by ¢ is the set W = {xd = (xid)lx e A}
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The automorphism ¢ acts on (}[X] (by transforming the coefficients
of polynomials), and it is clear that if A <—> OL, then ¥ e m”,

If A is k-closed, then A° depends only on the restriction of ¢ to k.

Notation: For k C K, subfields of (), let k = algebraic closure of k;
k™ = inseparable closure of k3 k° = separable closure of k; Aut(K/k) (or

Gal(K/k)) the group of automorphisms of K leaving k pointwise fixed.

Proposition l.l.1: For an algebraic set A, the following conditions are
equivalent:

1) A is defined over k'.

2) A is k-closed.

3) 8% = & for a1l ¢ € Aut(()/k).

31) A is k-closed, and &% = A for all ¢ € Gal(k/k).

(1) = 2) = 3) is almost trivial; 3) => 1) follows from the Lemma

of Weil on field of definition.)

Corollary: If A is defined over ks and A is k-closed, then A is defined

over k.

From this proposition we see immediately that if k is a perfect
field (i.e., k = ki), then the terms "k-closed" and "defined over k" for
an algebraic set are synonymous. Later we will only be concerned with
the case of k a perfect field.

From the proposition (or the definition), it is easy to check that
if A, A, are kclosed algebraic sets in (), then A U A, and A, N A,
are alsoj in general, if {Aa} is any collection of k-closed sets, then
N Au. is k=closed. Thus k-closed algebraic sets satisfy the usual topo-
logical conditions of closed sets. The topology on ﬂN having as its

closed sets the k-closed algebraic sets is called the "Zariski-k-topology"



(or "Zariski topology" when k = ()).

Unless otherwise specified, in all that follows, by “k-open" (resp.,
"open") and "k-closed® (resp., "closed") sets in _QN, we will always
mean with respect to the Zariski-k (resp., Zariski) topology.

It should be noted that the Zeariski topology on _O_N does not satisfy
the Hausdorff separation axiom; in fact, if Ol and O, are any non-empty
k-open subsets of _QN, then Ol N O2 is also a non-empty k-open subset.

In addition, any (relatively) open subset of an irreducible set A is

necessarily dense in A.
1.2 Rational mappings ([4] Chap. IV; [1] Chap. I, 81)

Definition: Let A be an algebraic set in QN.

A polynomial function (defined over k) on A is the restriction to A
of a function defined by a polynomial in ()[X] (resp., k[X]).

A rational function (defined over k) on A is the restriction to A
of a function defined by a rational quotient £/g in ()(X) (resp., k(X)),
with g not vanishing identically on each irreducible component of A.
(This last condition is equivalent to: if A = UAi is the decomposition
of A into irreducible components, and 4, <—> f,, then g ¢ g, all i)e
Notation: We denote by ()[A] (resp., k[A]) the ring of polynomial func-
tions on A (defined over k), and by L{)(4) (resp., k(4)) the ring of
rational functions on A (defined over k).

The ring (J[A] can be canonically identified with ()[X]/0U(4), so

that it is an integral domain when A is irreducible, and in that case,

0)(4) is just the quotient field of ()[A].

Definition: Let A be an irreducible algebraic set. The dimension of A

is the transcendence degree of the field extension ()(A)/(). (We write



dim A = daim(Q2(4)/0)).)
When A is irreducible, and A/k, one has ()[A] = k[4] ®k_()_, so that

dim A = dim(k(A)/k).

Definition: Let A and B be algebraic sets in _O_N and QM respectively.
A polynomial (resp., rational) map ¢ from A to B is a mapping given by
P = (Pyeees@y)y @ € QLA (vespe,y @, € (UA))y, L<igKM. Ifpisa
rational map from A to B and each @, is represented by fi/gi e 0)(a),
and x € A satisfies gi(x) #F0, 1 <1igM, then we say that ¢ is defined

at x, and the value of 9 at x is ¢(x) = (y(x),...,q,(x)) =
f1(x)  fulx)
(gl(x)’ "g(x)

if ¢, € k[A] (resp., k(A)), 1 <1 <M

) € B. We say that ¢ is defined over k (we write ¢/k)

From the definitions, we see that a rational function on an alge-
braic set A is a rational map from A to _Ql = (). It also follows that
any rational map @ from A to B is defined on a non-empty open set in each
irreducible component of A. In fact, if we denote by A‘P the subset of
points of A at which ¢ is defined, then Acp = UAicp (Ai the irreducible

components of A), and if ¢/k, then A, is a k-open set in Ai (for all i).

ip
Proposition 1.2.1: A rational map ¢ from A to B is a polynomial map if

and only if ACP = A,

Definition: We say a polynomial map @ is a birational isomorphism if ¢

is bijective and CP-l is also a polynomial map.

Notation: If ¢ is a rational map from A to B, and M is any subset of A,
then denote by ¢(M) the set—theoretic image of My = Ay NM by ¢ in Bj
and denote by ¢(M) the Zariski-closure of ¢(M) in B. (@(M) is called

the algebraic image of M by ¢.)
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If A is a k-closed algebraic set in (), denote A =AN Tl (4,

is called the set of k-rational points of A.)

If ¢ is a rational map from A to B, with ¢/k, A and B k-closed, then
clearly ¢(A ) C B, ; in particular, if ¢ is an isomorphism, ¢ gives a one-
to-one correspondence between Ak and Bk’ The following proposition sums

up some facts relating ¢(A) and o(A).

Proposition 1,242¢ Let A and B be algebraic sets, A irreducible, and ¢ a

rational map from A to Be. Then:

1) ¢(A) contains a set which is relatively open in @(A). In fact, if U
is any non-empty (relatively) open subset of A, then ©(U) contains a
subset which is relatively open in cp(T.

2) o(A) is irreducible.

3) If A is defined over k and @ is defined over k, then p(A) is defined

over k.

If A and B are irreducible algebraic sets, and ¢ is a gurjective
rational map from A to B, then there is a natural injection ()(A) <«
Q)(B) given by Yoo <= ¥ (¢ € (J(B)). Under this injection, ()(B) can
be identified with a subfield of ()(A), and we make the following defi-

nition.

Definition: The degree of ¢, denoted deg ¢, is the degree [()(4):()(B)],

if this is finitej otherwise the degree of ¢ is zero. We call ¢ insep-
arable (resp., separable) if ()(4)/()(B) is a purely inseparable (resp.,

separable) extension.

B2, Affine algebraic groups ([1] Chap. I; [2] exposé 3; [13] Chap. I)

2.1 Definitions
Definition: G is called an (affine) algebraic group if



1) G is an abstract group;
2) G is an algebraic set in _O_N;

3) The mapping GxG —> G is a polynomial map.
(x,5) = xly
G is defined over k (write G/k) if G as an algebraic set is defined over

k, and the mapping in 3) is defined over k.

If G is an algebraic group, then for any fixed a € G, the left
(respe., right) translation
Lysx—>ax, xeG
(R,: x > xa, x¢€G)
is an automorphism of G with respect to the structure of an algebraic
set. Since left translations are transitive, G is a "homogeneous" al-
gebraic set; in particular, G has no “singular" points. [1] These facts
are used in the proofs of some of the properties of algebraic groups.
If G is an algebraic group defined over k, then the identity ele-
ment of G is k-rational, and it is easily seen that G, is an abstract
group.
If G is an algebraic group and G® is an irreducible component of G
containing the identity element, 1, then it can be shown that G° is the

only irreducible component of G containing 1. Further, we have:

Proposition 2.1.1: Let G be an algebraic group defined over k, G° the
irreducible component of G containing 1. Then G° is a normal, algebraic
subgroup of G, defined over k, and G = U giG°, the coset decomposition
of G with respect to G°, is the decomposition of G into irreducible com—
ponents.

From this proposition, we see that an algebraic group G is irre-
ducible if and only if it is a connected set in the Zariski topologye.
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(Note: the words "comnected" and “"irreducible" are not interchangeable
for an arbitrary algebraic set A.) Also from this proposition, we see
that the dimension of each of the irreducible components of G is the

same as dim G°; thus we have the following

Definition: The dimension of an algebraic group G, denoted dim G, is

equal to dim G°.

Examples of aglgebraic groups
Exe 1. G= 6, = ), the "additive" group of ().

G, is defined by the zero polynomial, i.e., ®, = A(0). dim G =1.
Ex. 2. G = Gmgﬂ*, the "multiplicative" group of ().
2 = . =
& < ()% and & =AY -1). din G6_=1.
Ex. 3. G = SL(n), the "special linear group."

SL(n) € ﬂnz, and SL(n) = A(det(Xij) - 1),

Ex. 4« G = GL(n), the "general linear group."

GL(n) € _an“l, and GL(n) = A(det(Xij)Y - 1.

A1l of these groups are connected (since their corresponding ideals,
being generated by an irreducible polynomial, are prime), and all are
defined over the prime field. Note that when k is a topological field,
then the group GL(n)k = GL(n,k) becomes a topological group with respect
to the natural topology on kn2+l. With respect to this natural topology,
it can be shown that GL(n,C) is commected, GL(n,IR) has two connected
components, and GL(n, Qp) is totally disconnected. Thus, the Zariski

(k-)topology and the natural topology should be carefully distinguished.

Ex. 5. Let Gy, G, be algebraic groups in _ON and ()M respectively. Then

G % G, C OYM 35 a1s0 an algebraic group, and is called the direct

1



