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Preface to First Edition
(Revised)

How and what should we teach today’s undergraduates to prepare them
for careers in mathematically oriented areas? Furthermore, how can we
ameliorate the quantum leap from introductory calculus and linear algebra
to more abstract methods in both pure and applied mathematics? There
1s a subject which can take students of mathematics to the next level of
development and this subject is, at once, intuitive, calculable, useful, inter-
disciplinary and, most importantly, interesting. Of course, I'm talking here
about Differential Geometry, a subject with a long, wonderful history and
a subject which has found new relevance in areas ranging from machinery
design to the classification of four-manifolds to the creation of theories of
Nature’s fundamental forces to the study of DNA.

Differential Geometry provides the perfect transition course to higher
mathematics and its applications. It is a subject which allows students
to see mathematics for what it is — not the compartmentalized courses
of a standard university curriculum, but a unified whole mixing together
geometry, calculus, linear algebra, differential equations, complex variables,
the calculus of variations and various notions from the sciences. Moreover,
Differential Geometry is not just for mathematics majors, but encompasses
techniques and ideas relevant to students in engineering and the sciences.
Furthermore, the subject itself is not quantized. By this, I mean that there
is a continuous spectrum of results which proceeds from those which depend
on calculation alone to those whose proofs are quite abstract. In this way
students gradually are transformed from calculators to thinkers.

Into the mix of these ideas now comes the opportunity to visualize con-
cepts and constructions through the use of computer algebra systems such
as Maple and Mathematica. Indeed, it is often the case that the consequent
visualization goes hand-in-hand with the understanding of the mathemat-
ics behind the computer construction. For instance, in Chapter 5, I use
Maple to visualize geodesics on surfaces and this requires an understand-
ing of the idea of solving a system of differential equations numerically and
displaying the solution. Further, in this case, visualization is not an empty
exercise in computer technology, but actually clarifies various phenomena,
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b PREFACE TO FIRST EDITION (REVISED)

such as the bound on geodesics due to the Clairaut relation. There are
many other examples of the benefits of computer algebra systems to under-
standing concepts and solving problems. In particular, the procedure for
plotting geodesics can be modified to show equations of motion of particles
constrained to surfaces. This is done in Chapter 7 along with describing
procedures relevant to the calculus of variations and optimal control. At
the end of Chapters 1, 2, 3, 5 and 7 there are sections devoted to explaining
how Maple fits into the framework of Differential Geometry. I have tried
to make these sections a rather informal tutorial as opposed to just laying
out procedures. This is both good and bad for the reader. The good comes
from the little tips about pitfalls and ways to avoid them; the bad comes
from my personal predelictions and the simple fact that I am not a Maple
expert. What you will find in this text is the sort of Maple that anyone can
do. Also, I happen to think that Maple is easier for students to learn than
Mathematica and so I use it here. If you prefer Mathematica, then you can,
without too much trouble I think, translate my procedures from Maple into
Mathematica or you can look at [Gra93] for a huge number of Mathematica
geometry procedures and examples.

In spite of the use of computer algebra systems here, this text is tra-
ditional in the sense of approaching the subject from the point of view of
the 1800’s. What s different about this book is that a conscious effort has
been made to include material that I feel science and math majors should
know. For example, although it is possible to find mechanistic descriptions
of phenomena such as Clairaut’s relation or Jacobi’s theorem and geometric
descriptions of mechanistic phenomena such as the precession of Foucault’s
pendulum in advanced texts (see [Arn78] and [Mar92]), I believe they
appear here for the first time in an undergraduate text. Also, even when
dealing with mathematical matters alone, I have always tried to keep some
application, whether mathematical or not, in mind. In fact, I think this helps
to show the boundaries between physics (e.g. soap films) and mathematics
(e.g. minimal surfaces).

This book originally began as an attempt to fashion a one-quarter course
in Differential Geometry. In fact, I have taught such a course for mathe-
matics, physics, engineering, chemistry, biology and philosophy majors and
I have used topics from Chapters 1, 2, 3, 4, 5, 6 and 7. This does not mean
that I have covered these chapters exhaustively in one quarter, but that I
have chosen certain parts to emphasize and allowed students to do projects,
say, involving other parts. For example, students have done projects on
involutes and gear teeth design, re-creation of curves from curvature and
torsion, Enneper’s surface and area minimization (see above), geodesics on
minimal surfaces and the Euler-Lagrange equations in relativity. In many
cases, students have gone way beyond what this book contains and I owe
them my thanks for expanding my knowledge. The book, as it now stands,
is suitable for either a one-quarter or one-semester course in Differential Ge-
ometry as well as a full-year course. In the case of the latter, all Chapters
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may be completed. In the case of the former, I would recommend the chap-
ters I've listed above, but there is a good choice of alternative material as
well.

The reader should note two things about the layout of the book. First,
the exercises are integrated into the text. While this may make them some-
what harder to find, it also makes them an essential part of the text. The
reader should at least read the exercises when going through a chapter —
they are important. Secondly, I have chosen to number theorems, lemmas,
examples, definitions and remarks in order as is usually done using LaTeX.

There are several students who deserve special mention with regard to
this text. Rob Clark first interested me in minimal surfaces and, together
with Jack Chen, showed me the use of computers (e.g. Ken Brakke’s Evolver
program) in distinguishing ‘minimal’ from ‘harmonic’. Laszlo Ilyes provided
many of the Maple procedures for optimal control while Carrie Kyser took
my original laughable “geodesic procedures” and transformed them wonder-
fully into one elegant procedure which does exactly what I want it to do. Sue
Halamek did an excellent job on the first draft of the solutions to problems
and any present errors are certainly due to my final editing. Thanks to you
all and to all the students who watched me fumble my way to a book!

I would also like to acknowledge the contributions of my friend Allen
Broughton. It was Allen who first taught a course from a sheaf of my hand-
written notes and actually made sense of the notes and a success of the
course. Allen also first explored the use of Maple for Differential Geometry
and is responsible for producing the first procedures for calculating curva-
tures etc. Similarly, the handwritten notes referred to above would have
remained just that without the TEX-pertise of Joyce Pluth. Joyce typed
the first draft of those notes and patiently tutored me in the intricacies of
TgEXuntil I stopped bothering her. Let me also thank Elaine Hoff and Dena
Jones for helping me to photocopy, collate, cut and paste to ready versions
of this text for unsuspecting classes. I must also thank the members of
the Cleveland Geometry/Topology Seminar for sitting through numerous
lectures on various parts of this text.

Finally, the writing of this book would have been impossible without the
help, advice and understanding of my wife Jan and daughter Kathy. Thanks
— the computer is now free!

John Oprea
Cleveland, Ohio
oprea@math.csuohio.edu

Note: See the website www.csuohio.edu/math/oprea for Maple updates.
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Addendum to Second Edition

Since the publication of the First Edition, many people have sent me
comments, suggestions, and corrections. I have tried to take all of these into
account in preparing the Second Edition, but sometimes this has proved to
be impossible. One reason for this is that I want to keep the book at a
level that is truly accessible to undergraduates. So, for me, some arguments
simply can’t be made. On the other hand, I have learned a great deal from
all of the comments sent to me and, in some sense, this is the real payment
for writing the book. Therefore, I want to acknowledge a few people who
went beyond the call of duty to give me often extensive commentary. These
folks are (in alphabetical order!): David Arnold, David Bao, Neil Bomberger,
Gary Crum, Dan Drucker, Lisbeth Fajstrup, Karsten Grosse-Brauckmann,
Sigmundur Gudmundsson, Greg Lupton, Takashi Kimura, Jaak Peetre, Ted
Shifrin, and Peter Stiller. Thanks to all of you.

The Second Edition, of course, contains corrections to misprints and
mathematical errors which found their way into the First Edition, but it also
contains new material. In particular, in recent years I have become convinced
of the utility of the elliptic functions in differential geometry and the calculus
of variations, so I have included a simplified, straightforward introduction
to these here. The main applications of elliptic functions presented here
are the derivation of explicit parametrizations for unduloids and for the
Mylar balloon. Such explicit parametrizations allow for the determination
of differential geometric invariants such as Gauss curvature as well as an
analysis of geodesics. Of course, part of this analysis involves Maple. These
applications of elliptic functions are distillations of joint work with Ivailo
Mladenov, and I want to acknowledge that here with thanks to him for his
insights and diligence concerning this work.

The Maple work found in the Second Edition once again focuses on ac-
tually doing interesting things with computers rather than simply drawing
pictures. Nevertheless, in transporting the book from the AMS-TeX of the
First Edition to the LaTeX2e of the Second, it has proved to be much easier
to embed encapsulated Postscript files. So there are many more pictures of
interesting phenomena in this edition. The pictures have all been created by
me with Maple. In fact, by examining the Maple sections at the ends of chap-
ters, it is usually pretty clear how all pictures were created. The version of
Maple used for this edition is Maple 8. The Maple work in the First Edition
needed extensive revision to work with Maple 8 because Maple developers
changed the way certain commands work. I have been personally assured by
these developers that this will not happen in the future — we will see. Should
newer versions of Maple cause problems for the procedures in this book, look
at my website listed for updates: www.csuohio.edu/math/oprea. One
thing to pay attention to concerning this issue of Maple command changes is
the following. Maple no longer supports the “linalg” package. Rather, Maple
has moved to a package called “LinearAlgebra” and I have changed all Maple
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work in the book to reflect this. This should be stable for some time to come,
no matter what new versions of Maple arise. Of course, the one thing that
doesn’t change is the book’s focus on the solutions of differential equations
as the heart of differential geometry. Because of this, Maple plays an even
more important role through its “dsolve” command and its ability to solve
differential equations explicitly and numerically.

Originally this book was intended for a one-quarter or one-semester
course in the geometry of curves and surfaces. Now, however, it seems
to have grown beyond this, so I would like to make some recommendations
for instructors who do not already have their syllabi set in stone. A good
one-semester course can be obtained from Chapter 1, Chapter 2, Chapter
3, and the first “half” of Chapter 5. This carries students through the ba-
sic geometry of curves and surfaces while introducing various curvatures and
applying virtually all of these ideas to study geodesics. My personal predilec-
tions would lead me to use Maple extensively to foster a certain geometric
intuition. I also might use material such as the industrial application of
Section 5.7 as a student group project for the semester. A second semester
course could focus on the remainder of Chapter 5, Chapter 6, and Chapter 7
while saving Chapter 4 on minimal surfaces or Chapter 8 on higher dimen-
sional geometry for projects. Students then will have seen Gauss-Bonnet,
holonomy, and a kind of recapitulation of geometry (together with a touch
of mechanics) in terms of the Calculus of Variations. There are, of course,
many alternative courses hidden within the book and I can only wish “good
hunting” to all who search for them.

John Oprea

Cleveland, Ohio
oprea@math.csuohio.edu
j.oprea@csuohio.edu
www.csuohio.edu/math/oprea

Note: Maple 9 appeared in Summer of 2003 and everything in the book
has been tested with it. All commands and procedures work with one small
ezception. On page 167 in Chapter 3, the following Maple code appears to
define a surface of revolution with functions g and h.

> h:i=t->h(t);g:=t->g(t);

> surfrev:=[h(u)*cos(v),h(u)*sin(v),g(u)l;

surfrev := [h(u) cos(v), h(u)sin(v), g(u)]
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This works fine in Maple 8, but Maple 9 complains about defining g and h
this way saying that there are too many levels of recursion in the formula
for “surfrev”. The fix for Maple 9 is simple. Just don’t define g and h at all!
Go straight to the definition of “surfrev”. Then everything else works. The
same type of definition trouble occurs on pages 214, 215, and 217 and the
fix is the same.



Note to Students

Every student who takes a mathematics class wants to know what the
real point of the course is. Often, courses proceed by going through a list
of topics with accompanying results and proofs and, while the rationale for
the ordering and presentation of topics may be apparent to the instructor,
this is far from true for students. Books are really no different; authors
get caught up in the “material” because they love their subject and want to
show it off to students. So let’s take a moment now to say what the point
of differential geometry is from the perspective of this text.

Differential geometry is concerned with understanding shapes and their
properties in terms of calculus. We do this in two main ways. We start by
defining shapes using “formulas” called parametrizations and then we take
derivatives and algebraically manipulate them to obtain new expressions
that we show represent actual geometric entities. So, if we have geometry
encoded in the algebra of parametrizations, then we can derive quantities
telling us something about that geometry from calculus. The prime examples
are the various curvatures which will be encountered in the book. Once we
see how these special quantities arise from calculus, we can begin to turn the
problem around by restricting the quantities in certain ways and asking what
shapes have quantities satisfying these restrictions. For instance, once we
know what curvature means, we can ask what plane curves have curvature
functions that are constant functions. Since this is, in a sense, the reverse of
simply calculating geometric quantities by differentiation, we should expect
that “integration” arises here. More precisely, conditions we place on the
geometric quantities give birth to differential equations whose solution sets
“are” the shapes we are looking for.

So differential geometry is intimately tied up with differential equations.
But don’t get the idea that all of those crazy methods in a typical differential
equations text are necessary to do basic differential geometry. Being able
to handle separable differential equations and knowing a few tricks (which
can be learned along the way) are usually sufficient. Even in cases where
explicit solutions to the relevant differential equations don’t exist, numeri-
cal solutions can often produce a solution shape. The advent of computer
algebra systems in the last decade makes this feasible even for non-experts
in computer programming.

XV
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In Chapter 1, we will treat the basic building blocks of all geometry,
curves, and we will do exactly as we have suggested above. We will use
calculus to develop a system of differential equations called the Frenet equa-
tions that determine a curve in three-dimensional space. We will use the
computer algebra system Maple to numerically solve these equations and
plot curves in space. But with any computer program there are inputs, and
these are the parameters involved in the Frenet equations; the curvature and
torsion of a curve. So, we are saying that the curvature and torsion deter-
mine a curve in a well-defined sense. This is exactly the program outlined
above. Of course, we will also see that, by putting restrictions on curvature
and torsion, we can see what curves arise analytically as well.

In Chapter 2, we take what we have learned about curves and apply it to
study the geometry of surfaces in 3-space. The key definition is that of the
shape operator because from it flows all of the rest of the types of curvatures
we use to understand geometry. The shape operator is really just a way take
derivatives “in a tangential direction” and is related to the usual directional
derivative in 3-space. What is interesting here is that the shape operator can
be thought of as a matrix and this allows us to actually define curvatures in
terms of the linear algebraic invariants of the matrix. For instance, principal
curvatures are simply the eigenvalues of the shape operator, mean curvature
is the average of the eigenvalues (i.e. one half the trace of the matrix) and
Gauss curvature is the product of the eigenvalues (i.e. the determinant of
the matrix). Of course, the challenge now is twofold: first, show that the
shape operator and its curvature offspring reflect our intuitive grasp of the
geometry of surfaces and, secondly, show that these curvatures are actually
computable. This leads to the next chapter.

In Chapter 3, we show that curvatures are computable just in terms
of derivatives of a parametrization. This not only makes curvatures com-
putable, but allows us to put certain restrictions on curvatures and produce
analytic solutions. For instance, we can really see what surfaces arise when
Gauss curvature is required to be constant on a compact surface or when
mean curvature is required to be zero on a surface of revolution. An impor-
tant byproduct of this quest for computability is a famous result of Gauss
that shows that Gauss curvature can be calculated directly from the metric;
that is, the functions which tell us how the surface distorts usual Euclidean
distances. The reason this is important is that it gives us a definition of
curvature that can be transported out of 3-space into a more abstract world
of surfaces. This is the first step towards a more advanced differential ge-
ometry.

Chapter 4 deals with minimal surfaces. These are surfaces with mean
curvature equal to zero at each point. Our main theme shows up here
when we show that minimal surfaces (locally) satisfy a (partial) differential
equation known as the minimal surface equation. Moreover, by putting ap-
propriate restrictions on the surface’s defining function, we will see that it
is possible to solve the minimal surface equation analytically. From a more
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geometric (as opposed to analytic) viewpoint, we focus here on basic com-
putations and results, as well as the interpretations of soap films as minimal
surfaces and soap bubbles as surfaces where the mean curvature is a con-
stant function. The most important result along these lines is Alexandrov’s
theorem, where it is shown that such a compact surface embedded in 3-space
must be a sphere. The chapter also discusses harmonic functions and this
leads to a more advanced approach to minimal surfaces, but from a more
analytic point of view. In particular, we introduce complex variables as the
natural parameters for a minimal surface. We don’t expect the reader to
have any experience with complex variables (beyond knowing what a com-
plex number is, say), so we review the relevant aspects of the subject. This
approach produces a wealth of information about minimal surfaces, includ-
ing an example where a minimal surface does not minimize surface area.

In Chapter 5, we start to look at what different geometries actually tell
us. A fundamental quality of a “geometry” is the type of path which gives
the shortest distance between points. For instance, in the plane, the shortest
distance between points is a straight line, but on a sphere this is no longer
the case. If we go from Cleveland to Paris, unless we are very good at tun-
nelling, we must take the great circle route to achieve distance minimization.
Knowing that shortest length curves are great circles on a sphere gives us
an intuitive understanding of the curvature and symmetry of the sphere. So
this chapter deals with “shortest length curves” (i.e. geodesics) on a surface.
In fact, we modify this a bit to derive certain differential equations called
the geodesic equations whose solutions are geodesics on the surface. Again,
while it is sometimes possible to obtain analytic expressions for geodesics,
more often we solve the geodesic equations numerically and plot geodesics
to discover the underlying geometry of the surfaces. The geodesic equations
may also be transported to a more abstract situation, so we begin to see
more general geometric effects here as well.

Chapter 6 is the culmination of much of what has come before. For in this
chapter, we see how curvature can affect even the most basic of geometric
qualities, the sum of the angles in a triangle. The formalization of this effect,
which is one of the most beautiful results in Mathematics, is known as the
Gauss-Bonnet theorem. We present various applications of this theorem to
show how “abstract” results can produce concrete geometric information.
Also in this chapter, we introduce a notion known as holonomy that has
profound effects in physics, ranging from classical to quantum mechanics.
In particular, we present holonomy’s effect on the precession of Foucault’s
pendulum, once again demonstrating the influence of curvature on the world
in which we live.

Chapter 7 presents what can fairly be said to be the prime philosophi-
cal underpinning of the relationship of geometry to Nature, the calculus of
variations. Physical systems often take a configuration determined by the
minimization of potential energy. For instance, a hanging rope takes the
shape of a catenary for this reason. Generalizing this idea leads yet again
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to a differential equation, the Euler-Lagrange equation, whose solutions are
candidates for minimizers of various functionals. In particular, Hamilton’s
principle says that the motions of physical systems arise as solutions of the
Euler-Lagrange equation associated to what is called the action integral. A
special case of this gives geodesics and we once again see geometry aris-
ing from a differential equation (which itself is the reflection of a physical
principle).

In Chapter 8, we revisit virtually all of the earlier topics in the book, but
from the viewpoint of manifolds, the higher-dimensional version of surfaces.
This is necessarily a more abstract chapter because we cannot see beyond
three dimensions, but for students who want to study physics or differen-
tial geometry, it is the stepping stone to more advanced work. Systems in
Nature rarely depend on only two parameters, so understanding the geom-
etry inherent in larger parameter phenomena is essential for their analysis.
So in this chapter, we deal with minimal submanifolds, higher-dimensional
geodesic equations and the Riemann, sectional, Ricci and scalar curvatures.
Since these topics are the subjects of many volumes themselves, here we
only hope to indicate their relation to the surface theory presented in the
first seven chapters.

So this is the book. The best advice for a student reading it is simply
this: look for the right differential equations and then try to solve them,
analytically or numerically, to discover the underlying geometry. Now let’s
begin.
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