Topics in Contemporary
. Differential Geometry,
~ Complex Analysis an
- Mathematical Physics

, Proceedings of the 8th International Workshop on Complex Structures and Vector Fields

e e




Proceedings of the 8th International Workshop on Complex Structures and Vector Fields

Topics in Contemporary
Differential Geometry,
Complex Analysis and
Mathematical Physics

Institute of Mathematics and Informatics, Bulgaria 21— 26 August 2006

Editors

Stancho Dimiev

‘ Bulgarian Academy of Sciences, Bulgaria

Kouei Sekigawa

Niigata University, Japan

\& world scientific

NEW JERSEY - LONDON - SINGAPORE - BEIJING « SHANGHAI - HONG KONG - TAIPEI - CHENNAI



Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

TOPICS IN CONTEMPORARY DIFFERENTIAL GEOMETRY,
COMPLEX ANALYSIS AND MATHEMATICAL PHYSICS
Proceedings of the 8th International Workshop on Complex Structures and Vector Fields

Copyright © 2007 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN-13 978-981-270-790-1
ISBN-10 981-270-790-5

Printed in Singapore by World Scientific Printers (S) Pte Ltd



PREFACE

This book is the Proceedings of the 8th International Workshop on
Complex Structures and Vector Fields held at Bulgarian Academy of Sci-
ences, Institute of Mathematics and Informatics (Sofia) from August 21 to
August 2, 2006. The first Workshop was held at the same place on 1992.
We are aiming at the higher achievement of the studies of current top-
ics in Complex Analysis, Differential Geometry, Mathematical Physics and
also of the intermediate ones among them including their applications. It
is notable that many new specialists in Mathematical Physics attended the
present Workshop besides regular participants in the previous Workshops
and also that a new tendency to expand our subject matters is adopted in
the present Workshop, and places especially emphases on the further devel-
opment of the studies in Differential Geometry, Complex Analysis, Partial
Differential Equations and Integrable System, and also on the expansion
of the research areas including new ones in Mathematical Physics in the
forthcoming Workshops.

This book is dedicated to the memory of three distinguished scientists,
Professor Shigeru Ishihara who is regarded as a teacher of many Japanese
participants, Professor Shozo Koshi who was an active participant of the
Workshop, and Professor Sawa Manoff who was an active participant of
the Workshop and also made much effort for the development of the same
Workshop.

The editors express their deepest gratitude to Professor T. Oguro for his
outstanding co-operation and efforts in the arrangements of this volume.

Editors
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MODULI SPACE OF KILLING HELICES OF LOW ORDERS
ON A COMPLEX SPACE FORM

T. ADACHI*

Department of Mathematics, Nagoya Institute of Technology
Gokiso, Nagoya, 466-8555, Japan
E-mail: adachi@nitech.ac.jp

We give a report on the moduli space of helices of proper order less than 5
which are generated by some Killing vector fields on a complex space form
from the viewpoint of the length spectrum.

1. Introduction

In this note we give a summary of my work concerning essential Killing
helices of low orders on a non-flat complex space form, which is either a
complex projective space or a complex hyperbolic space. A smooth curve
~ parameterized by its arclength on a Riemannian manifold M is said to
be a heliz of proper order d if it satisfies the following system of ordinary
differential equations

V5Yj = —rj1Yj1 + kY0, 1S5S4, (1.1)

with positive constants Ki,...,Kk4—1 and an orthonormal system {Y; =
4,Ya,..., Yy} of vector fields along . Here kg = k¢ = 0, and Yp, Y41
are null vector fields along <. These constants xi,...,kq—1 are called the
geodesic curvatures of v and the system {Y,} the Frenet frame of v. We
call a helix Killing if it is generated by some Killing vector field on M.
On real space forms, which are standard spheres, Euclidean spaces and
real hyperbolic spaces, all helices are Killing and lengths of closed helices
are given by their geodesic curvatures. But on a complex space form the
situation is different. We study the difference on laminations on the moduli
spaces of Killing helices which are induced by the length spectrum.

*The author is partially supported by Grant-in-Aid for Scientific Research (C) (No.
17540072) JSPS, and Scientist Exchange Program between JSPS and MES.
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2. Moduli space of Killing helices and length spectrum

We say two helices 1,72 on a Riemannian manifold M are congruent
to each other if there exist an isometry ¢ of M and a constant t; sat-
isfying v2(t) = ¢ o 71(t + to) for all ¢. We denote by K4(M) the set of
all congruence classes of Killing helices of proper order d on M. We put
K(M) =g, Ka(M) and call it the moduli space of Killing helices. On a
real space form RM™, as helices are classified by their geodesic curvatures,
we see K4(RM™) is bijective to (0,00)41, the (d — 1) product of half lines,
when d < n. But on a non-flat complex space form, as isometries are either
holomorphic or anti-holomorphic, the moduli space of Killing helices is not
so simple. For a helix on a Kéhler manifold (M, J) with Frenet frame {Yi},
we define its complex torsions 7;; (1 < i < j < d) by 7; = (Y;,JY;). As
was pointed out in [8], on a non-flat complex space form CM™ a helix v is
Killing if and only if all its complex torsions are constant along ~.

We call a helix v closed if there is positive t, with v(t + t.) = v(t) for
all ¢. The minimum positive t. with this property is called the length of
and is denoted by length(vy). When v is not closed we say it is open and
put length(y) = oco. The length spectrum L : K(M) — (0,00] is defined
by L£([7]) = length(v), where [y] denotes the congruence class containing a
helix «. For the sake of simplicity we denote a restriction of £ onto a subset
of K(M) also by L.

3. Moduli space of helices on a real space form

For the sake of comparison, we here show some properties on length spec-
trum of helices on a real space form RM™(c) of constant sectional curvature
c. The length spectrum £ : Ko(RM™(c)) = (0,00) — (0, 00] of circles of
positive geodesic curvature, which are helices of proper order 2, is given as
L(k) = 2m/V/k? + ¢, where we read it infinity when k2 + ¢ < 0. Thus if we
induce the canonical Euclidean differential structure on K2(RM™(c)), we
see the length spectrum is smooth on this moduli space.

For about the moduli space of helices of proper order 3 on RM"(c) (n >
3), the feature depends on sectional curvature c. All helices of proper order
3 on a Euclidean space R™ are unbounded. For a standard sphere S™(c) of
constant sectional curvature ¢, we have a canonical foliation {Ga} 1,009
on K3 (S"(c)) which is related with the length spectrum and is given as

Ga = { [Wamal | K1 + (52 — an/c/2)” = c(a® — 1) /4 ]},

where [vx,,x,| denotes the congruence class of helices of proper order 3 on
S™(c) with geodesic curvatures k1, k2 (see Figure 1).
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Theorem 3.1. The length spectrum L : K3(S™(c)) — (0, 00] is constant on
each leaf. Each leaf is set theoretically maximal with respect to this property.
A leaf G, consists of congruence classes of closed helices if and only if o

and va? — 1 are rational.

For a real hyperbolic space H™(c) of constant sectional curvature ¢, we

have a canonical foliation {ga}ae(_m o0y O Ks(H"™(c)) which is given as

Ga = { Mxamal | K1 + (k2 — aV/[€]/2)* = —c(a® +1)/4 }.

We should note that the moduli space BK3(H"(c)) of bounded helices of
proper order 3 on H"(c) is given as { [Yu, x,] | £3+(k2—+/]c|/2)? > —c/2 }.
On this space the foliation {Ga} (1.00) Satisfies the same property as of
the foliation on IC3(S"). In both cases of a standard sphere and of a real

hyperbolic space, these foliations can be naturally extend to a foliation or
a lamination on Kz (RM™(c)) U K3(RM™(c)).

—F
[unbounded]

ve/z )
= vici/2

[bounded]

Fig. 1. Foliation on K3 (5™ (c)) Fig. 2. Foliation on K3 (H"(c))

4. Moduli space of circles on a complex space form

We now study the moduli space of helices on a non-flat complex space form.
On a Kahler manifold, the complex torsion 715 of each circle v is always
constant along v, because

T2 = (V44 JY2) + (1, JV3Y2) = k1 ((Y2, JY2) — (%, J¥)) = 0.

Therefore we see the moduli space K2(CM™) of circles of positive geodesic
curvature on a non-flat complex space form is set theoretically bijective to
the product (0,00) x [0,1] when n > 2. In this section we suppose n > 2
and we shall denote by [v,,] the congruence class of circles with geodesic
curvature kK and complex torsion 712 = 7 on a complex space form CM"(c)
of constant holomorphic sectional curvature c.
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For a complex projective space CP™(c), we have a lamination structure
{f“}ue[o,nu{*} on K3 (CP™(c)) defined by

{[vx,0] | & > 0}, if u=0,
Fu =1 {[ver] | 3VBerr(4r2 + )32 = u}, f0<p<1,
{lre] |”~>0}, if p=x.

Theorem 4.1. The length spectrum L : Ko(CP™(c)) — (0,00] is smooth
on each leaf with respect to the canonical induced Euclidean differential
structure. Each leaf is mazimal with respect to this property.

1) The leaf F,. consists of congruence classes of closed circles satisfying
L([vx,1]) = 27/VK2 +c.

2) The leaf Fo also consists of congruence classes of closed circles satisfying
L([vk,0])) = 47/V4K2 +c.

3) The leaf F,, (0 < p < 1) consists of congruence classes of closed cir-
cles if and only if n = q(9p* — ¢°)(3p? + ¢%)~3/? with some relatively
prime positive integers p,q satisfying p > q. On this leaf L([vyx.r]) =
26(p, q)m+/(3p? + ¢2)/{3(4k2 + ¢)}, where §(p,q) = 1 when the product
pq is odd and 6(p,q) = 2 when pq is even.

For a complex hyperbolic space CH™(c), we also have a lamination
structure {F,} on K3 (CH™(c)) defined by

we0,00]U{x}

{lvx,0] | & >0}, if u=0,
{[vx,7] | 3V3lc|wT|4k% + | 73/2 = p}, if 0 < p < oo,
P = L
{[’Y\/m/2’1_]|0<7'<1}, lfl-l«—oo,
{h’n,l] |f€>0}y if u = .

This lamination has the same properties as of the lamination on Ko (CP")
if we restrict ourselves on the moduli space

BK2(CH™(c)) = { [ve,r] | 0 < 7 < w(k) } U { [l | &> Vel }
of bounded circles on CH™(c) (see [2]). Here v : (0,00) — [0, 1] is given by

0, if0 < K < /[d/2,
v(K) = ¢ (4x% +¢)*2/(3V3]clk), if /]c|/2 < k < /¢,
1, i x> /2.
In view of the features of these laminations on the moduli spaces of
circles, we find the set { [v«,1] | £ > 0} of congruence classes of trajectories
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for Kdhler magnetic fields is quite different from other part of Ky ((CM "(c))
Since each trajectory lies on some totally geodesic CM! and other circles
do not lie on CM !, we shall classify helices by this property. We call a helix
on CM™ of proper order 2k — 1 or 2k essential if it lies on some totally
geodesic CM*. We denote by EKXq(CM™(c)) the set of all congruence classes
of essential Killing helices of proper order d on CM™(c).

[unbounded] [bounded]

&= N

V25, Veip Vil
Fig. 3. Lamination on K2 (CP™(c)) Fig. 4. Lamination on K2(CH™(c))

5. Moduli spaces of Killing helices of orders less than 5 on
a complex space form

Though all circles on a non-flat complex space form are Killing, helices of
proper order greater than 2 are not necessarily Killing. Computing 7;; by
using (1.1) we see a helix of proper order d on CM™ is Killing if and only if

—Ki1Ti—15 + KiTit1j — Kj—1Tij—1 + KiTi541 =0, 1<i<j<d, (5.1)

where we set 7ox = Tkk = Tka+1 = 0 ([7]). Applying these relations to a
helix of proper order 3 on CM™ (n > 2), we find it is Killing if and only if its
geodesic curvatures and complex torsions satisfy 713 = 0 and k1793 = KoT12.
If we consider the initial frame we find the following.

1) A helix is essential Killing if and only if 712 = +k1/\/k? + k2, 713 = 0,

Tog = j:/cz/\/ fi% + n%, where the double signs take the same signature.
2) When n > 3, a helix is Killing if and only if its complex torsions satisfy

Ti2 = K17, T13 = 0, To3 = k7 with some 7 satisfying |7| < 1/v/k? + K3.
Thus we see the moduli space £K3 (CM") of essential Killing helices of
proper order 3 is bijective to a quater of a plane (0,00)? and the moduli
space K3 (CM") is bijective to the set (0,00)? x [0, 1].

When we consider Killing helices of proper order 4, the relations (5.1)
turn to k1723 + K3T14 = KaTi12, K3T23 + K1T14 = KoT3q and 713 = 794 = 0.
Considering the initial frame we find a helix of proper order 4 on CM™
(n > 2) is essential Killing if and only if its complex torsions satisfy one of
the following conditions:



