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As far as the laws of mathematics
refer to reality, they are not certain;
and as far as they are certain,

they do not refer to reality.
ALBERT EINSTEIN



PREFACE

This book is written as much to disturb and annoy as to instruct. Indeed,
it seeks to instruct primarily by being disturbing and annoying, and it is often
deliberately provocative. If it should cause heated discussion and a re-exami-
nation of fundamentals in classroom and mathematics club it will have
achieved one of its main purposes.

It is intended as a supplement and corrective to textbooks, and as
collateral reading in all courses that deal with vectors. Because the exercises
call for no great manipulative skill, and the book avoids using the calculus,
it may at first sight seem to be elementary. But it is not. It has something for
the beginner, to be sure. But it also has something for quite advanced
students—and something, too, for their instructors.

I have tried to face awkward questions rather than achieve a spurious
simplicity by sweeping them under the rug. To counteract the impression
that axioms and definitions are easily come by and that mathematics is a
thing of frozen beauty rather than something imperfect and growing, I have
mixed pure and applied mathematics and have made the problem of defining
vectors a developing, unresolved leitmotif. The book is unconventional, and
to describe it further here would be to blunt its intended effect by giving
away too much of the plot. A brief word of warning will not be amiss,
however. There are no pat answers in this book. I often present ideas. in con-
ventional form only to show later that they need modification because of
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vi PREFACE

unexpected difficulties, my aim being to induce a healthy skepticism. But too
much healthy skepticism can be decidedly unhealthy. The reader should
therefore realize that the ideas could have been presented far more
hearteningly as a sequence of ever-deepening insights and, thus, of successive
mathematical triumphs rather than defeats. If he reads between the lines he
will see that, in a significant sense, they are indeed so presented.

To my friends Professors Arthur B. Brown and Vdclav Hlavaty, who read
the manuscript, go my warmest thanks. It is impossible to express the depth
of my indebtedness to them for their penetrating comments, which have led
to major improvements in the text. They should not be held accountable for
the views expressed in the book: on some issues I resisted the urgent advice
of one or the other of them. A ground-breaking book of this sort is unlikely
to be free of debatable views and outright errors, and for all of these I bear
the sole responsibility.

BANESH HOFFMANN
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INTRODUCING VECTORS

1. DEFINING A VECTOR

Making good definitions is not easy. The story goes that when the philos-
opher Plato defined Man as “a two-legged animal without feathers,” Diogenes
produced a plucked cock and said “Here is Plato’s man.” Because of this, the
definition was paiched up by adding the phrase “and having broad nails”;
and there, unfortunately, the story ends. But what if Diogenes had countered
by presenting Plato with the feathers he had plucked?

Exercise 1.1 What? [Note that Plato would now have feathers.]
Exercise 1.2 Under what circumstances could an elephant qualify as
a man according to the above definition?

A vector is often defined as an entity having both magnitude and direction.
But that is not a good definition. For example, an arrow-headed line segment

like this

has both magnitude (its length) and direction, and it is often used as a draw-
ing of a vector; yet it is not a vector. Nor is an archer’s arrow a vector, though
it, too, has both magnitude and direction.

To define a vector we have to add to the above definition something
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2 INTRODUCING VECTORS Chap. 1

analogous to “and having broad nails,” and even then we shall find ourselves
not wholly satisfied with the definition. But it will let us start, and we can try
patching up the definition further as we proceed—and we may even find our-
selves replacing it by a quite different sort of definition later on. If, in the end,
we have the uneasy feeling that we have still not found a completely satisfac-
tory definition of a vector,we need not be dismayed,for it is the nature of
definitions not to be completely satisfactory, and we shall have learned pretty
well what a vector is anyway, just as we know, without being able to give a
satisfactory definition, what a man is—well enough to be able to criticize
Plato’s definition.

Exercise 1.3 Define a door.
Exercise 1.4 Pick holes in your definition of a door.

Exercise 1.5 According to your definition, is a movable partition
between two rooms a door?

2. THE PARALLELOGRAM LAW

The main thing we have to add to the magnitude-and-direction definition
of a vector is the following:

o P

Figure 2.1

Let us think of vectors as having definite locations. And let the arrow-headed

line segments OP and 5@ in Figure 2.1 represent the magnitudes, directions,
and locations of two vectors starting at a common point O. Complete the

parallelogram formed by OP and b@, and draw the diagonal OR. Then, when
taken together, the two vectors represented by OP and @ are equivalent to
a single vector represented by the arrow-headed line segment OR. This vector

is called the resultant of the vectors represented by OP and @, and the above
crucial property of vectors is called the parallelogram law of combination of
vectors.

Exercise 2.1 Find (@) by drawing and measurement, and (b) by
calculation using Pythagoras’ theorem, the magnitude and direction of
the resultant of two vectors OP and @ if each has magnitude 3, and OP
poinfs thus — while D@ points perpendicularly, thus 1 .[A4ns. The
magnitude is 34/ 2, or approximately 4.2, and the direction bisects the
right angle between OP and @.]
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Exercise 2.2 Show that the resultant of two vectors OP and OQ
that point in the same direction is a vector pointing in the same direction
and having a magnitude equal to the sum of the magnitudes of OP and
@. [Imagine the parallelogram in Figure 2.1 squashed flat into a line.]

Exercise 2.3 Taking a hint from Exercise 2.2, describe the resultant
of two vectors OP and OQ that point in opposite directions.

Exercise 2.4 In Exercise 2.3, what would be the resultant if OP and
(TQ had equal magnitudes? [Do you notice anything queer when you
compare this resultant vector with the definition of a vector?]

Exercise 2.5 Observe that the resultant of OP and ()@ is the same

as the resultant of @ and OP. [This is trivially obvious, but keep it in
mind nevertheless. We shall return to it later.]

In practice, all we need to draw is half the parallelogram in Figure 2.1—
either triangle OPR or triangle OQR. When we do this it looks as if we had

combined two vectors OP and PR (or OQ and QR) end-to-end like this, even

R Q R

o P o

Figure 2.2 (For clarity, the arrow heads meeting
at R have been slightly displaced. We shall occa-
sionally displace other arrow heads under similar
circumstances.)

though they do not have the same starting point. Actually, though, we have
merely combined OP and 0@ by the parallelogram law.* But suppose we
were dealing with what are called free vectors—vectors having the freedom to
move from one location to another, so that OP and QR in Figure 2.2, for
example, which have the same magnitude and the same direction, are officially
counted not as distinct vectors but as the same free vector. Then we could indeed
combine free vectors that were quite far apart by bringing them end-to-end,

like OPand PR in Figure 2.2. But since we could also combine them accord-
ing to the parallelogram law by moving them so that they have a common
starting point, like OP and 0_@ in Figure 2.1, the parallelogram law is the
basic one. Note that when we speak of the same direction we mean just that,
and not opposite directions—north and south are not the same direction.

*Have you noticed that we have been careless in sometimes speaking of ‘‘the vector
represented by OP,” at other times calling it simply ‘‘the vector ﬁP and now calling it

just “OP”? This is deliberate—and standard practice among mathematicians. Using
meticulous wording is sometimes too much of an effort once the crucial point has been
made.



4

INTRODUCING VECTORS Chap. 1

Exercise 2.6 Find the resultant of the three vectors OA, OB, and
OC in the diagram.

QK
L@

Solution ~ We first form the resultant, OR, of OA and OB like this:

¢ R

Q,
m
B

and then we form the resultant, OS, of OR and OC like this:

s

This figure looks complicated. We can simplify it by drawing only half of
each parallelogram, and then even omitting the line OR, like this:

S

(0] A

From this we see that the resultant OS can be found quickly by thinking
of the vectors as free vectors and combining them by placing them end-

to-end: AR, which has the same magnitude and direction as OB, starts
where 04 ends; and then ITS': which has the same magnitude and direction
as OC, starts where AR ends.

Exercise 2.7 Find, by both methods, the resultant of the vectors in
Exercise 2.6, but by combining OB and OC first, and then combining

their resultant with OA. Prove geometrically that the resultant is the
same as before.

Exercise 2.8 T S

The above didgram looks like a drawing of a box. Show that if we drew
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only the lines OA, AR, RS, and OS we would have essentially the last
figure in Exercise 2.6; that if we drew only the lines OB, BT, TS, and OS
we would have a corresponding figure for Exercise 2.7; and that if we
drew only OA, AU, US, and OS we would have a figure corresponding to

our having first combined OA with OC and then their resultant with OB.

Exercise 2.9 In Exercises 2.6, 2.7, and 2.8, is it essential that the
three vectors 571, OB, and OC lie in a plane? Give a rule for finding the
resultant of three noncoplanar vectors O4, OB, and OC that is analogous
to the parallelogram law, and that might well be called the parallelepiped

law. Prove that their resultant is the same regardiess of the order in
which one combines them.

Exercise 2.10 Find the resultant of the three vectors OA, OB, and

OC below by combining them in three different orders, given that vectors

OA and OC have equal magnitudes and opposite directions. Draw both
the end-to-end diagrams and the full parallelogram diagrams for each
case.

3. JOURNEYS ARE NOT VECTORS

It is all very well to start with a definition. But it is not very enlightening.
Why should scientists and mathematicians be interested in objects that have
magnitude and direction and combine according to the parallelogram law?
Why did they even think of such objects? Indeed, do such objects exist at all
—outside of the imaginations of mathematicians?

There are, of course, many objects that have both magnitude and direc-
tion. And there are, unfortunately, many books about vectors that give the
reader the impression that such objects obviously and inevitably obey the
parallelogram law. It is therefore worthwhile to explain carefully why most
such objects do not obey this law, and then, by a process of abstraction, to
find objects that do.

Suppose that I live at 4 and my friend lives 10 miles away at B. I start
from A and walk steadily at 4 m.p.h. for 2} hours. Obviously, I walk 10'miles.
But do I reach B?

You may say that this depends on the direction I take. But what reason is
there to suppose that I keep to a fixed direction? Fhe chances are overwhelm-
ing that I do not—unless I am preceded by a bulldozer or a heavy tank.
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Most likely I walk in all sorts of directions; and almost certainly, I do not
arrive at B. I may even end up at hame.

Exercise 3.1 Where are all the possible places at which I can end,
under the circumstances?

Now suppose that I start again from 4 and this time end up at B. I may
take four or five hours, or I may go by bus or train and get there quickly.
Never mind how I travel or how long I take. Never mind how many times I
change my direction, or how tired I get, or how dirty my shoes get, or whether
it rained. Ignore all such items, important though they be, and consider the
abstraction that results when one concentrates solely on the fact that I start at
A and end at B. Let us give this abstraction a name. What shall we call it?
Not a “journey.” That word reminds us too much of everyday life—of rain,
and umbrellas, and vexations, and lovers meeting, and all other such items
that we are ignoring here; besides, we want to preserve the word “journey”
for just such an everyday concept. For our abstraction we need a neutral,
colorless word. Let us call it a shift.

Here are routes of four journeys from 4 to B:

B8

(a) QO
0, (d)

Figure 3.1

All four journeys are different—with the possible but highly improbable
exception of (b) and (c).

Exercise 3.2 Why “highly improbable”?
But though the four journeys are not all the same, they yield the same
shift. We can represent this shift by the arrow-headed line segment 4B. It has

both magnitude and direction. Indeed, it seems to have little else. Is it a
vector? Let us see.

Consider three places A4, B, and C as in Figure 3.2. If I walk in a straight

c

A B
Figure 3.2

line from A to B and then in a straight line from B to C, I make a journey
from A to C, but it is not the same as if I walked directly in a straight line
from A to C: the scenery is different, and so is the amount of shoe leather
consumed; most likely, and we can easily think of several other differences.
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Exercise 3.3 Why “most likely”?

Thus, though we could say that the walks from 4 to B and from B to C
combine to give a “resultant” journey from A4 to C, it is not a journey in a
straight line from A to C: the walks do not combine in a way reminiscent of
the way in which vectors combine; they combine more in the tautological
sense that2 +1 =2+ 1than2 + 1 = 3.

Journeys, then, are not vectors. But when we deal with shifts we ignore
such things as the scenery and the amount of shoe leather consumed. A shift
from A to B followed by a shift from B to C is indeed equivalent to a shift
from 4 to C. And this reminds us so strongly of the vectorial situation in
Figure 2.2 that we are tempted to conclude that shifts are vectors. But there
is a crucial difference between the two situations. We cannot combine the
above shifts in the reverse order (compare Exercise 2.5). There is no single
equivalent to the shift from B to C followed by the shift from A to B. We can
combine two shifts only when the second begins where the first ends. Indeed,
in Figure 2.1, just as with journeys, we cannot combine a shift from O to P
with one from O to Q in either order. Thus shifts are not vectors.

4. DISPLACEMENTS ARE VECTORS

Now that we have discovered why shifts are not vectors, we can easily see
what further abstraction to make to obtain entities that are. From the already
abstract idea of a shift, we remove the actual starting point and end point and
retain only the relation between them: that B lies such and such a distance from
A and in such and such a direction.* Shifts were things we invented in order
to bring out certain distinctions. But this new abstraction is an accepted ma-
thematical concept with a technical name: it is called a displacement. And it is
a vector, as we shall now show.

In Figure 4.1, the arrow-headed line segments AB and LM are parallel and

M
B
A/ /

Figure 4.1

of equal length. Any journey from A4 to B is bound to be different from a
journey from L to M. Also, the shift from 4 to B is different from that from
L to M because the starting points are different, as are the end points. But the
two shifts, and thus also the various journeys, yield the same displacement:
if, for example, B is 5 miles north-northeast of A, so too is M 5 miles north-
northeast of L, and the displacement is one of 5 miles in the direction north—
northeast.

*We retain, too, the recollection that we are still linked, however tenuously, with

journeying, for we want to retain the idea that a movement has occurred, even though we
do not care at all how or under what circumstances it occurred.
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Exercise 4.1 Starting from a point 4, a man bicycles 10 miles due
east to point B, stops for lunch, sells his bicycle, and then walks 10 miles
due north to point C. Another man starts from B, walks 4 miles due north
and 12 miles due east and then, feeling tired, and having brought along
a surplus of travellers’ checks, buys a car and drives 6 miles due north
and 2 miles due west, ending at point D in the pouring rain. What dis-
placement does each man undergo? [Ans. 10o/2 miles to the northeast.]

Now look at Figure 2.1. The shift from O to P followed by the shift from
P to R is equivalent to the shift from O to R. The shift from P to R gives a

displacement PR that is the same as the displacement @ Therefore the
displacement OP followed by the displacement OQ is equivalent to the dis-
placement OR.

Exercise 4.2 Prove, similarly, that the displacement TQ followed
by the displacement OP is also equivalent to the displacement OR.

Thus, displacements have magnitude and direction and combine according
to the parallelogram law. According to our definition, they are therefore

vectors. Since displacements such as AB and LM in Figure 4.1 are counted as
identical, displacements are free vectors, and thus are somewhat special. In

general, vectors such as AB and LM are not counted as identical.

5. WHY VECTORS ARE IMPORTANT

From the idea of a journey we have at last come, by a process of succes-
sive abstraction, to a specimen of a vector. The question now is whether we
have come to anything worthwhile. At first sight it would seem that we have
come to so pale a ghost of a journey that it could have little mathematical signifi-
cance. But we must no. underestimate the potency of the mathematical process
of abstraction. Vectors happen to be extremely important in science and
mathematics. A surprising variety of things happen to have both magnitude
and direction and to combine according to the parallelogram law; and many
of them are not at all reminiscent of journeys.

This should not surprise us. The process of abstraction is a powerful one.
It is, indeed, a basic tool of the mathematician. Take whole numbers, for
instance. Like vectors, they are abstractions. We could say that whole numbers
are what is left of the idea of apples when we ignore not only the apple trees,
the wind and the rain, the profits of cider makers, and other such items that
would appear in an encyclopedia article, but also ignore even the apples them-
selves, and concentrate solely on how many there are. After we have extracted
from the idea of apples the idea of whole numbers, we find that whole numbers
apply to all sorts of situations that have nothing to do with apples. Much the
same is true of vectors. They are more complicated than whole numbers—so



