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PREFAGE =

We are very pleased to introduce the Proceedings of the 8th International Symposium on Catalyst
Deactivation held in Brugge on October 10-13, 1999. 'In the almost regularly organized series of meet-
ings, the location alternated between Nerth America and Belgium : Berkeley, 1978; Antwerpen, 1980;
Berkeley, 1985; Antwerpen, 1987; Evanston, 1991; Oostende, 1994; Cancun, 1997. This time a different
location has been selected for the Belgian symposium 1999: Brugge, one of the most attractive medieval
cities of the world. This could be done thanks to the invaluable organizational talent of Ms Rita Peys. We
thank her for the magnificent job she did for this symposium.

The North American colleagues and we all gave different styles to each of these symposia, and selected
programs with specific objectives. But in all cases, the aim was to develop the knowledge that the
scientific community has of catalyst deactivation. There is a continuous progress in this area, but
perhaps not so rapid as desirable for the general development of the science and applications of
catalysis. There is certainly a consensus that a deeper understanding of the phenomena which cause
catalyst deactivation will contribute to the development of catalysts less subject to structural
transformations, and more resistant to poisons and coke formation. This is of central interest for industry.

But the direct applications of this knowledge are certainly not the only results of the investigations made
in Academia and Industry. Recent trends in Catalytic Science and Chemical Reaction Engineering
suggest that far reaching prospects could be expected. Progress is still slow and new ideas need time to
penetrate the scientific community. Nevertheless, results already demonstrate that studies in catalyst
deactivation play a major role in the identification of the real catalytic system in particular the structure
and texture of the solid, which is often in a metastable state, as it is operated in the industrial reactor.
These studies also allow identifying the experimental conditions which preserve this active and selective
state. This is crucial for a real understanding of catalysts and catalysis. Another area of catalytic science
concerns reactions kinetics, which, if properly determined, are of a paramount importance in the
elucidation of mechanisms. The behavior of the kinetics during aging and deactivation and an accurate
modoling of the evolution of activity and selectivity are essential information for the process performance.
These are just two typical examples, but quite generally, although progress is still timid, the science of
catalyst deactivation is going to be more oriented to fundamental issues.

The reader of the Proceedings of Catalyst Deactivation 1999 will find lectures and contributions dealing
with many aspects of catalyst deactivation or characterization of deactivated catalysts. Some case
studies illustrate both the complexity and the investigations to be conducted and the benefit of a better
understanding.

We are very happy of the international character of this symposium : the contributions originated from
21 countries. We are confident that the discussions during the Symposium itself and these Proceedings
will contribute to the development of this field of research and will promote a further increase of fruitful
contacts between academic and industrial investigators.

B.Delmon
G.F.Froment

Chairmen
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Coping with Catalyst Deactivation in Hydrocarbon Processing

J.W. Gosselink * and . A.R. van Veen®

* Shell Global Solutions, Shell International Oil Products B.V.,
® Shell International Chemicals B.V.

Shell Research and Technology Centre, Amsterdam,
Badhuisweg 3, 1031 CM Amsterdam, The Netherlands

Summary

Coping with catalyst deactivation and poisoning is a continuous challenge in hydrocarbon processing.
Innovation of the processes in an integrated manner, which encompasses catalysts, process line-ups,
process conditions and reactors, has provided the required break-throughs and will continue to do so in
the future. Several examples are given, gas oil hydrotreating, vacuum gas oil (mild) hydrocracking,
residue hydroprocessing, atmospheric residue FCC and naphtha reforming.

1. Introduction

In a modern refinery a large number of conversion processes transform crude oil into valuable
transportation fuels such as gasoline, kerosene and diesel, and intermediates for the petrochemical
industry [1,2]. In all the
catalytic conversion and
treating processes catalyst
deactivation, for instance
by coke deposition,
precipitation of  metal
sulfides and poisoning,
plays an important role, see
Figure 1. Coping with
deactivation and poisoning
is a continuous challenge
for industrial researchers,
in particular in the light of
increasingly tight product
. specifications. Innovation
-t Coka | of the processes via
B Poisons integrated innovation of
Hff Mealwifides | reactor technologies,
- process  line-ups  and
catalysts, is their answer to
these challenges.  This
review deals with coping
with deactivation in several
of the main refinery processes, hydrotreating, hydrocracking, residue hydroprocessing, catalytic cracking
and catalytic reforming.

"

k|

wi
B

Residue hydroconversion

Figure 1. Coke, poisons and metal sulfides deposition in crude oil
processing (Reprinted, adapted from reference [1], with kind
permission from Kluwer Academic Publishers)

2. Hydrotreating

There are numerous ways in which hydrotreating and, more generally, hydroprocessing catalysts may
deactivate: (1) covering of the active sites by reactants, products or other molecules via selective
adsorption/poisoning; (2) sintering or decomposition of the active phase(s); (3) deposition of coke
and/or metal sulfides [3]. Coke deactivation occurs in principle in hydrotreating of all oil fractions, see
Figure 1 [3]. The heavier the oil fraction the more pronounced coke deactivation can become, but by
operating at higher hydrogen pressure this is counteracted. Metals deposition occurs mainly in the
hydrotreating of atmospheric and vacuum residues, see section 4. Coke deactivates the hydrotreating



catalyst both by active site coverage and by pore plugging, depending on the catalyst age. Coke
accumulates on the alumina support of the hydrotreating catalysts and in this way blocks the active
edges of the CoMoS-slabs [3]. The deactivation is relatively rapid in the initial phase of the catalyst due
to adsorption of polynuclear aromatics and N-containing aromatics [3,4]. In general, heteroatom-
containing molecules have the tendency to poison the hydrotreating catalysts by adsorbing on the active
sites. Furthermore, poisoning by deposition of silica may occur when hydrotreating coker products,
where silicone oil is added as anti-foaming agent [3]. Despite the importance of coke deposition, there is
strong evidence (TEM, EXAFS) that the deactivation of catalysts used in VGO hydrotreating is at least
partly due to a loss in MoS, dispersion, often with the concomitant segregation of the promoter sulfide,
NisS; or CogSg [5-8]. An important parameter in catalyst design is, therefore, to control the interaction
between metal and support. During regeneration of a spent catalyst the metals should be re-dispersed,
and usually are to a large extent, unless the sintering during operation has been too great [5-7].

The increasingly stringent specifications on transportation fuels still pose interesting challenges on the
hydrotreating processes and its catalysts. Gas oil hydrodesulfurization and hydrogenation is a typical
example in this respect [1,2,9]. To meet the new specifications on sulfur and aromatics levels in the
diesel oil, refiners operating single stage gas oil hydrotreaters have several options: (1) decreasing
throughput, which implies either decreasing the amount of diesel oil produced or installation of extra
reactor capacity, both options being very expensive; (2) increasing the hydrogen (partial) pressure, also
an expensive option; (3) improving the activity of the conventional catalysts, though step-out changes
are not expected; (4) increasing temperature, which increases catalyst deactivation by coke deposition
and, though beneficial for hydrodesulfurization (HDS), can negatively affect the hydrogenation because
this is an equilibrium-limited reaction. Dedicated noble-metals-based hydrogenation catalysts and to a
lesser extent, also the HDS catalysts are sensitive to poisoning by the inevitable HDS by-product, H,S.
Innovation in reactor technology and process lining has generated alternative solutions, of which several
have already been commercialised
[1,2]. The new options have two
themes in common: lower the
amount of gaseous H;S poison in
the final stage of the hydrotreating
process, where deep-HDS and/or
deep hydrogenation is targeted,
and/or split the S-molecules in
refractory and  non-refractory
streams, Examples of these new
options are: (1) two-stage operation
with intermediate H,;S removal
applying two different reactors [10]
or one reactor with special feed and
A gas line-ups [11]; (2) gas / liquid
cat. packing counter-current operation
» diesel oil (conventional  hydrotreating  is
Figure 2. Decrease in the level of poisoning by H,$ in deep-HDS 2ied out in gas / liquid co-current
and deep hydrogenation of gas oil: gas/liquid counter-current operation), see Figure 2 [12], (3)
operation and structured catalyst packing as future innovation st, of 88 °d. PR & light
[1,12,16] (Reprinted, adapted from reference [1], with kind Sctions:velich g caneghex] e et

permission from Kluwer Academic Publishers) liquid co-current operation and a
heavy stream, containing the more

refractory S-containing molecules,
which is treated in gas /liquid counter-current operation [13]; (4) again a split into a light and heavy
stream, but now with the heavy stream being subject to mild hydrocracking and the light stream to
desulfurisation, followed by deep-hydrogenation of both streams after removal of gaseous poisons [14].
New process innovations, such as catalytic distillation [15] and full reactor gas / liquid counter-current
operation applying structured catalyst packing, see Figure 2, [16] have already been reported.
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3. Hydrocracking
'

The hydrocracking process is used in the refinery mainly to convert heavy gas oils and vacuum gas oils
(e.g. 370-540 °C) to lighter and high quality products like naphtha (e.g. C;-180 °C), kerosene (e.g. 180-
250 °C) and diesel oil (e.g. 250-370 °C), and to deeply remove hetero-atoms. Depending on the actual
design, hydrowax (e.g. 370-540 °C), an excellent feedstock for a wide variety of other processes, such
as ethylene cracker, FCC, base oil manufacture, can also be produced [1,2]. When focusing on virtually
metals-free feedstocks, the main reason for catalyst deactivation in hydrocracking is coke formation
[17], although it has been reported that some forms of coke could also be beneficial [18]. However,
coke deactivation generally determines cycle length [17,19]. Some Mo[W]S, sintering and release of Ni
from its edges (the latter especially at low H,S partial pressure [20]) also takes place [21,22], which
affects the performance of the hydrocracking catalyst, and should be reversed during regeneration.
Coke can be both formed from precursors present in the feed, for instance asphaltene-like molecules
[23,24], and from (poly)-aromatic molecules formed during the process itself as result of condensation
reactions [25,26]. Coke covers active sites, hinders transport of reactants and products, and eventually
block pores. In principle, coke deactivation of these bifunctional catalysts results in different
deactivation rates for the different functions (presumably the acidic functions to a greater extent than the
hydrogenation functions [27]), which can have a significant impact on the product selectivities of the
hydrocracker reactor [19]. During time on-stream the composition of the coke changes by
graphitisation, resulting in an increased C/H ratio and, in principle, also the spatial arrangement and
active site coverage might change [28]. Coke formation is counteracted by the hydrogenation of the
coke precursors by the catalysts, thus suppressing the steady-state coke levels on the catalysts [29]. A
minimum hydrogen partial pressure is required to be effective, otherwise even de-hydrogenation
reactions might be accelerated [30]. Intimate contact between the hydrogenation and the cracking active
sites is considered to be beneficial to suppress coke formation [29). For modelling purposes we can
consider a hydrogenation function clearing coke (precursors) from an annulus on the support around it
[31]. Under severe hydrocracking conditions - under pressures as low as 30 bar and temperatures as
high as 450 °C - coke is not only formed catalytically via dehydrogenation reactions, but also thermally
via condensation reactions of aromatic radicals [32,33]. Under these severe conditions vapour-liquid
equiljbria have an important effect on the coke formation, because partial evaporation of the feed results
in local increage of coke precursor concentration and consequently in increased coking.

Activity-wise, deactivation of

T(roqired) - T(base) (°C) ; a0 eI (a.ib) .the catalyst is wmpmted for
2 i 30 in commercial practice by
adjusting the operating
temperature (see Figure 3),

_ whereby certain design limits

1 “cannot be exceeded, and the
end-of-run temperature of the
cycle is set. The start-of-run

- Foolalint cotusnbRicn O8], s arizih temperature is determined by
30f CnH(20+Z) SOR m-® the initial activity of the (fresh)

e > catalyst. Cycle length is thus

the available time-period

10 between start- and end-of-run

temperatures. In addition to

y , ; - activity, product selectivities
tirne on/stréam and qualities also change as

Figure 3. Effect of increasing operating temperature in single result of coke deactivation.
stage hydrocracking of heavy feedstocks on aromatics levels This can have an impact on the
in products (Reprinted, adapted, with permission from reference 3';1: ;?odgt:étgoxﬁnec?o::;
[17]. Copyright (1997) American Chemical Society) ihen Skn N6 Bantiod by the
downstream disullation

sections, or certain products
may not meet the required quality specifications as a result of the required operating temperature being
too high (even if it is still below the design value), which increases the aromatics levels in the products



(see Figure 3). Fouling of equipment can also force operators to shut down the hydrocracker for
maintenance and cleaning.

Cracking catalysts, containing for instance amorphous silica-alumina and/or zeolites, are sensitive to
poisoning by nitrogen-containing organic molecules and, to a lesser extent, ammonia [34,35]. Therefore,

0 vo IMerstage N° (mg/kg)
1200
800
c424 402 _
10 08 06 04 02 00
Fraction of reference HDN activity
>370°C conv. over Z-703 (%wt)
Z703 401
20 -
ek TLP ._Interstage N* (mg/kg)
200 400 600

Figure 4. Poisoning of cracking catalyst in the

MHC process by organic N-containing molecules [17,34]
(Reprinted, adapted with permission from reference [17].

Copyright (1997) American Chemical Society.

in the first stage of the hydrocracking
process  generally  hydrotreating
catalysts are used to convert the
nitrogen-containing organic molecules
to ammonia (hydrodenitrogenation,
HDN), while at the same time other
hetero-atoms are also removed via
HDS and HDO (hydrodeoxygenation).
However, these first-stage
hydrocracking catalysts also suffer
from inhibition effects as result of the
strong adsorption of the organic N-
containing molecules [36]. The effect
of poisoning of  dedicated
hydrocracking catalysts by organic N-
containing molecules is clearly
illustrated by the dramatic decrease in
the cracking activity of a commercial
hydrocracking  catalyst by the
increasing level of organic N-
containing molecules, for instance as a
result of a decrease in activity of the
upstream HDN catalyst, see Figure 4,

with a C-424/Z-703 catalyst stacked bed in mild hydrocracking operation [17,34].

Several basic line-ups of the hydrocracking process have been developed [37], see Figure 5. In two-
stage operation the effluent of the first and second stages are combined and sent to a fractionator for
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Figure 5 Different hydrocracking operation modes give different levels
of poisoning [1,37] (Reprinted, adapted from reference [1] with kind
permission from Kluwer Academic Publishers)

hydrowax

product recovery. The
heavy liquid fraction is
recycled to the second
stage. In series-flow
operation the full first
stage effluent is routed to
the second stage. The
heavy liquid fraction can

kerosene again be recycled to the
second stage. In the
gas oil single-stage. | opéantion,

one reactor is used with
or without a liquid
recycle. It is important to
realise that in both series-
flow and single-stage
operation all the
ammonia formed in the
first stage is passed
through to -the second
stage (or bottom of the
single stage), where it
poisons the dedicated

ctacking catalysts. This is not the case in the two-stage operation. In addition to these fixed-bed reactor
configurations, ebullating reactors (see also section 4) have also been reported for the hydrocracking
process [29]. Continuous on-line catalyst withdrawal is an additional option for dealing with catalyst

deactivation, see section

4 for more details.



