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PREFACE

Recently, statistics has made remarkable progress in application as well as in
theory, and its applications have come to range over fields such as environments,
natural resources, medical treatments, etc. To encourage further researches and
disseminate new ideas in this science, the International Conference in Statistics
.in Tokyo was held on November 28-30, 1979 at the Institute of Statistical
Mathematics. It had about 160 participants from Belgium, Canada, China, France,
Hong Kong, Korea, the U.S.A. and Japan, and 65 papers were read.

The papers in this volume were presented at the Conference and have passed referees'
examination. In these papers recent developments in statistical inference and data
analysis are discussed by prominent workers in these fields. The book will be of
interest to statisticians and to research workers who apply statistics.

The Conference was supported by various industrial and commercial organizations in
Japan. We wish to express deep gratitude to them on behalf of the Organizing
Committee. The Conference was sponsored, as well, by the Institute of Statistical
Mathematics, Tokyo, the Japan Statistical Society, the Bernoulli Society, and the
Institute of Mathematical Statistics, U.S.A., each in its own fashion. We wish to
express our thanks to them also.

In editing the book, we had help and cooperation from many people in refereeing
papers. We wish to express our thanks to them. In addition, thanks are due to
Mr. R. Price and to Miss F. Rizzardi, of Berkeley, California, U.S.A. for their
work in improving the English language usage in some of the Japanese authored

papers, and also, to Miss Y. Okada and Mrs. U. Mizuno for their assistance in
editorial affairs.
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ENLARGED MATHEMATICAL REPRESENTATIONS
FOR STOCHASTIC PHENOMENA
Edward W. Barankin

Department of Statistics
University of California
Berkeley, California
U.S.A.

This paper is to stress the commonality of some

of our recent publications wherein we have begun
to adduce more general mathematical structures
than appear in today's literature on stochastic
processes to describe certain stochastic phenomena.
We give particular attention to one of these
structures, and we supply explicit proofs here

for certain results that were previously stated
without proof.

1. INTRODUCTION

We have recently put out two pieces of work in each of which the
burden was to set forth a mathematical description of a non-
deterministic process in such a manner that the phenomenon in
question would be reasonably well accounted for and that the pro-
posed mathematical description would be recognizably generalizing
of the current mathematical form that is applied to describing
stochastic processes. The first of these pieces of work is the
article [3], already in print. The second, [U4], was presented
at the 2™
St. Louis, and the Proceedings of that Conference should have

International Conference on Mathematical Modeling, in

appeared by the time this present paper is published. Our motiva-
tion and guidance in efforts of this kind come from, and serve, our
fundamental research aim, which is the establishment of a general
theory of behavior asserting that all behavior is the cumulative
acts in stochastic processes. This aim is formulated with due
regard for the possible necessity of enlarging appreciably the
mathematical form that we take as descriptive of stochastic processes.
The limits of enlargement--the extent of this necessity--will be
determined by the eventual successful formulation of the general dy-
namical law in the theory. (For more extensive discussion of these
general theoretical ideas, see [1l] and [2]--to start with.)
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The article [4] --together with a companion article, [5], still to
be published--undertakes the relatively limited objective of finding
the proper rearrangement of the standard mathematical givens in an
extended finite game so that a playing of the game takes on a de-
scription that is recognizable as a stochastic process form.
Starting out to approach this problem, one might expect that the
necessary rearrangement would be routine and that the stochastic
process form that resulted would be the usual standard form that is
found in today's probability literature. But the answer 1s not
quite so simple. The information partition of the game-tree ver-
tices in general precludes the possibility of such a classical
description. What did emerge as the general answer to the question
is this: the playing of any finite game may be seen as an evolving
stochastic process provided the admitted mathematical stochastic
process form 1s a (finite) collection of component spaces with,
however, no assumed prior temporal ordering among them, and the
successive conditional probability measures are on the successively
smaller maximal direct sums of the still unactualized spaces, thus
admitting actualization of the component spaces in any order.

(see [4] and [5] for a more detailed description and elaboration of
this result.)

We shall not here pursue any further the specific subject of the
article [4]. The behavioral question that was confronted and dealt
with in the article [3] appears to have led us much further into

the generality that will be needed for the full formulation of the
dynamical law. It 1s to the stochastic process form set forth in
that article [3] that we shall devote the rest of the discussion

in this paper. In the next section we shall present this stochastic
process description, including the proofs of various facts regarding
it--proofs that we did not give in [3]. 1In the course of this
development we shall correct a small error made in [3]. Some of the
statements made there are in fact true only if the strain in ques--
tion is a complete pride, not merely a pride. We have therefore
modified our definition of a stochastic process in this present
article, calling for its strain to be a complete pride of eventu-
alities. (Definitions of pride, complete pride, strain, etc. are
given in Section 2.) In Section 3 we give some elaborative com-
ments on our present description of a stochastic process. For the
particular substantive psychological and sociological phenomena
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that were treated with this stochastic process description in the
article r3], we respectfully refer the reader to that article.

2. REAL STRUCTURE

In the theory of behavior that we expect to emerge from our work

it 1s conceived that all reality 1s structured of eventualities

and acts. The collection of all eventualities has a partial order
relation, <<, and a meet operation, A , under this order. Thus,
the collection is a semi-lattice which we denote by the symbol_ﬂi .
We postulate that this semi-lattice has no least element.

A sub-seml-lattice of ff; that has no least element will be said
to be unbounded below, abbreviated u.b. (%4 itself is u.b.). A
subset QU éf e will be called conditionally meet-closed, or
c.m.c., if it has the following property: If ‘
elements of 1Lf , and 1if ElA 52
of w , then 51 A EEGW' Generalizing this, we define a
subset ‘Z/ of £ to be completely conditionally meet-closed

Ek, k€K} of elements of (ﬁ/,
for some ZE='€{f , we have

[$3]

and are

. 2
>> 53 for some element 53

(c.c.m.c.) 1if for any subcollection

such that there exists ﬁéx Egp » 5!
gééEk e(ﬂ'. (Clearly there are intermediate notions as well, for
any specific maximum cardinality of the subcollections of (ﬂf.)

A c.m.c. subset will also be called a pride or a simple pride, and

a c.c.m.c. subset will be called a complete pride. We shall
contract these last two expressions to simpride and compride, resp.

We can now state our central definition:

Definition 1. A stochastic process is a compride of eventualities
together with the acts resulting from actualization of eventuali-

ties in this compride.

A stochastic process S can then be presented notationally as
(QY,B), where 1L/ denotes the compride of eventualities that
characterizes S, and B denotes the behavior in S, that is, the
acts resulting from actualization of eventualities int/ . We shall
call &/ the strain of the stochastic process S.

If‘ﬁf is the strain of a stochastic process S, we define

(2.1) WU gL {T€E%E [T « T for some reflf .
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With the understanding that a complete sub-semi-lattice of £ is

one that contains existing meets of arbitrary subcollections of its
elements, we have the following:

Proposition 1. WU is a u.b. complete sub-semi-lattice of ﬂi 3

and 4 <"
Proof: It is immediately clear that 4f/ v is a semi-lattice and
that w EWU To see that w g is u.b., suppose, to the

contrary, that I‘O is the least element of WU. Then W U
cannot be all of . , and so there exists an eventuality T!' $WU
If for every T' ¢WU we had TgAT' = T, then % itself would

have a lower bound. Hence, there must be some T'§ WU such that

Ty A ' << -Tg- But then Tga r' GWU and we have a contradiction
to the assumption that I‘O is a lower bound for WU. Therefore,
as asserted, WU is u.b.

Finally, to see that WU is a complete sub-semi-lattice, let T
k €K, be elements of WU whose combined meet exists. For each
k, I‘k < 'I‘k for some Tk EW. For any particular chosen kO’
have /\I‘k « Tko, and therefore this meet is, by definition, a
member of WU. This completes the proof of Proposition 1.

k’

we

Being a complete sub-semi-lattice, WU is in particular a compride
and so it is the strain of a stochastic process. We denote this
process by SU and we call it the universal process of S, or the
universe of S. We call WU the universal strain of the strain

.

Letting K denote any index set, we next define

(2.2) AR LL rewViir « T €W VKEK, and 3 A T,] =
KEK
A oeflf ).

We now prove
Proposition 2. WR is a compride, and W c WR.

Proof. Let = ©be any element of w , and suppose that Tk’

k €K, are a collection of elements of W such that E<« ’1‘k
for every k, and /\Tk exists. Then these Tk are elements
of W whose meet e?ists and has an element of W , namely =,
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as a sub-eventuality. Therefore, by the characterizing property
of W as a compride, it follows that /\ Tk GW And thus it is
established that {f/ < {/F~.

To prove that W R is a compride, suppose that T

K’ k€K, are
elements of WR whose combined meet exists and is the eventu-
ality T, say, and suppose that I satisfies I‘ > GWR

if Tk" k' €K', are elements of W , whose meet exists, and
are such that f<_< T+ for all k', then we will have T, <« T,
for every k', and, therefore, since I‘0 GWR, we have
k'/éK'Tk' e{/. Tthis shows that T€4/R, and it is therefore
demonstrated that W R is a compride. Proposition 2 is therefore

proved.

Since WR is a compride, it is the strain of a stochastic process.
We denote this process by sR, and we call it the reach of the
process § . We call 4Z/R the reach of the strain 1f/ .

Now we set

fe. 55 AYE el 4V _ Ay R

Explicitly, we have

(2.4) 4Y" = (re@¥|ror some k: 1 « 1, €Y,¥keK, anaF AT Y.
k

We prove

Proposition 3. WE is a u.b. complete sub-semi-lattice of‘:‘E

Proof. Let I‘k,, k' €K', be a collection of elements of WE,
whose meet exists. For a particular index value, say ké, we have
I‘K(') <« Tk’ Y kK € K, for some collection [Tk, k €K} of elements
of 4/ , anad /l\'Tk ¢4/ . But then it is also true that

A I S A V k € K. Thus, the collection {T,, k€K} verifies
K'EK! .
also the membership of /}\('I‘k, in WE, and it is proved that WL

is a complete sub-semi-lattice.

To prove that w E is u.b., suppose, to the contrary, that it
is not, and that I'0 is the least element of WF Then, as in
th'e proof of Proposition 1, we can demonstrate that there is'an
eventuality FOO << I‘O. But from the argument in the preceding
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paragraph it is clear that any sub-eventuality of an eventuality
. E "

in ‘i/ is again in €Z/E. Hence, we have Too € ¥, thus
contradicting the assumption that T is the least element.

0
Hereby the proof of Proposition 3 is completed.

Again as in the case of 1£7U, since ﬂ‘] E is a complete sub-
semi-lattice, it is a compride and is, therefore, the strain of
a stochastic process, SE. This process we call the eternal process

of S or the eternity of S. And £{f E  We call the eternal
strain of the strain ﬂi/ .

The terminology we have introduced above for the S-related stochastic
processesSU, SR and SE emerges as meaningful when we give. two
more definitions and then state our present conception of an at

least partial detailing of the dynamical law.

Definition 2. A stochastic process S = ({{/ ,B) is said to be
evolving, or to be in evolution, if there is ongoing actualization
of eventualities in 4/ , but no actualization of an eventuality

in "

Definition 3. A stochastic process S = (1Y ,B) 1is said to lapse,

Dynamical law (partial statement): )
(1) If ='<« 2" and Z' actualizes, then EZ" actualizes;

(ii) if every £, of a collection {2/} actualizes, then
necessaril A Zk exlists and it actualizes;
necessarlly I £x15%3 ang 1v actuaslzcs

(iii) in any u.b. semi-lattice of eventualities, at least one
of which has actualized, some eventuality which has not
actualized will actualize.

Notice that, according to (ii), if the collection of eventualities
{Ek}' is such that & Zk does not exist, then it does not happen
that all the eventualities =, actualize. Thus, regarding (iii),
we sce that it does not happen that all the eventualities in a u.b.
semi-lattice actualize; that is, whatever the eventualities in a
u.b. semi-lattice that have actualized, there are other eventu-
alities in that semi-lattice that have not actualized.

It should be mentioned here that the strain of any stochastic
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process-=1in fact, any pride of eventualities--can be presented as a
semi-lattice with a least element. This is accomplished by the
introduction of a fictitious element, an element that does not rep-
resent an eventuality. For a fuller explanation of this fact we
refer the reader to the article [3]. 1In the discussion there we
have furthermore pointed out that this construction may be seen as
accounting for the null set in the classical representation of a
collection of eventualities as a o-field of sets.

3. SOME COMMENTS

We now wish to make a few remarks on various features of the theori-
zation tnat has been laid out above--to point up its promise in the
direction of more complete description of reul phenomena.

Our theorization--it is seen--ventures a completely explicit charac-
terization of the distinction between the thriving of a process and
the demise of that process. The former is the on-going actualization
of only eventualities in QU R; the latter comes to be if an eventu-
ality in (i/E --and, by Proposition 3 and the Dynamical Law, end-
lessly thereafter another and another and another eventuality in

ﬂﬂ E actualizes. Traditional theorizations dealing with moder-
ately and more complex pfocesses say nothing specific about the
demise, or the lapsing--or the death--of a process, but imply that
this state is, or entails, the cessation of actualization of eventu-
alities in the process. In the case of very complex processes, like
human beings, there is frequently a tacit or explicit postulation of
another realm of being into which the process passes at its lapsing.
But there is no scientifically tenable theorization offered rclating
to that other realm or to that passage. Our proposed formulation
maintains, to the contrary, that there is only one realm of being--
only one mode of reality. And the lapsing of a process is accord-
ingly more complicated than a mere "cessation".

~

In the article [ 3] we cited the example of a tossed coin splitting
in two at its median plane and the two halves coming to rest with,
respectively, the coin-head up and the coin-tail up--this as an
illustration of the set of concepts being set forth; namely, the
semi-lattice property of the collection of all eventualities,

the characterization of the strain of a stochastic process as in
general only conditionally (completely) meet-closed, and the defined

lapsing of a process. Other examples can be adduced to support this
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conceptual framework. For instance, consider a block of dry ice.
(This example was suggested by F. Mogerman.) The process that is
this particular block of dry ice might contain, for each n=1,2,...,
the eventuality, Fn, that the volume of the block is measured and
is found not to exceed 1/n cubic centimeters. Empirically we do

not consider that this entity continues as a block of dry ice if it
has evaporated completely, that is, if it yields a zero volume
measurement. Thus, while it 1is reasonably supposed that there exists
the eventuality T =né\ Pn, this eventuality does not belong
to the process that is thé& block of ice. The actualization of T'
signals the lapse of the block of ice. We see in this example a
case that argues strongly for the conditionality of meet closure
in the definition of a process.

There 1is much further examination to be made of this proposed con-
cept structure. Many more examples can usefully be looked at.

And in the case of empirically familiar but fairly complex processes
it can, it seems, be a challenging problem to account for empirically
standard manners of demise in direct terms of the above definition

of lapsing.
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SPECIFICATION OF STATISTICAL MODELS
BY SUFFICIENCY

Edward W. Barankin
University of California

Hirokichi Kudo
Kwansei Gakuin University

Tokitake Kusama
Waseda University

A reformulation of the specification of statistical models is
given, with several examples discussed. The basis for this new
mode of specification is a generalized concept of sufficiency
inspired by Dawid. It is brought out also that the degree of
universality of assertions regarding certain variables will
depend on the stochastic properties which will be allowed to
attach to these and other variables. The sufficiency of
statistics and parameters in a model is redefined using the
notation of conditional independence, following along the line
of Dawid [4].

§0 Introduction.

Looking at the mathematical structure of statistical theory, we find several
important concepts which turn out to have a common mathematical expression; such
concepts are sufficiency and ancillarity of a statistic, and identifiability and
estimability of a parameter. When the Bayesian concept of prior distribution is
brought into statistical theory, the number of such concepts grows still larger,
as seen in the definition of sufficiency by Kolmogoroff [7] and the concept of
parametric sufficiency due to Barankin [2]. A duality between parameters and
statistics was brought out in the paper [2] of Barankin (and also by Kolmogoroff),
and in more recent times several authors— Petit [11], Kudo [9], Picci [12% and
Dawid [4] — have worked on such a duality. Dawid [4], in particular, established
a unification of several concepts in diverse fields by using the concept of
conditional independence.

All of these works, however, presented their discussions within the traditional
framework which conceives a strict distinction between parameters and statistics.
In this paper we shall break down the towering wall standing between parameters
and statistics and try to establish a new approach to statistical problems by
taking the whole range of the variables appearing in a statistical problem as the
basic space, regarding these variables as random variables associated with the
family of their possible distributions; the distinction between parameters and
statistics will emerge in the opposed concepts of a variable accessible through
observation and a variable inaccessible through observation. In this paper we
shall call a pair of an accessible variable x and an inaccessible variable 6 a
statistical model if the conditional distribution of x given 6 is definite which-
ever member of the family of possible joint distributions of x and & may be true.
Since the variables act only as partitions of the basic space in this paper, we
may and shall carry on our discussion using o-field-language instead of variable-
language.

In Section 1, we shall discuss the traditional distinction existing between
parameters and statistics and declare our intention to drop this distinction from
our discussions. In Section 2, we characterize the basic space of a statistical
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problem as a certain measurable space, and we illustrate this with several
examples from the classical theory of statistics. Lonoking to the identification
of parameters and statistics, we distinguish the class of accessible variables
from the class of all other variables (Section 3), and then in Section 4 the
statistical model is introduced as a pair of an accessible o-field (the sampling
o-field) and an inaccessible o-field (the parametric o-field). We regard in this
paper all variables appearing in a statistical problem as random variables with

a distribution whose conditional and marginal parts are not specified if they are
unknown. These ‘unspecified parts of the distribution may affect the degree of
universality of assertions on the parametric o-field. Such effects are discussed
in Sections 5 and 6. The informational properties, such as sufficiency, of
sub-o-fields of the sampling and parametric o-fields are defined in the last
section. These are expressed in terms of conditional independence, following
Dawid [4].

§1 Background of the discussion.

In the traditional first approach to mathematical statistics, it is customary to
make a clear distinction between parameters and samples (or functions of samples,
which we call statistics). They are usually distinguished by the feature that
the value of the sample comes to be known through observation while the value of
the parameter remains unknown (although inferable) after observation.

The distinction between statistics and parameters is traditionally also reflected
in the stochastic assumptions. The samples and statistics were to be random
variables whereas the parameters were not. Some statistical problems, however,
contain even third kinds of variables, other than parameter and statistic: such
third variables are, for example, a future variable in a prediction problem and

a missing variable in an estimation problem. Oncewe try to place these variables
within the general context of variables in a statistical problem, we see that the
distinction between parameters and statistics becomes vague indeed. According to
either of the above two criteria for the distinguishing of parameters and
statistics, the future variable in a prediction problem and the missing variable
in an estimation problem cannot be classified as either one or the other. As
another example, the marginal frequency of the contingency table in the testing
for independence cannot be regarded as a parameter.

The affirmations for variables that arise in a discussion as here above may be
dependent on the meaning one takes for probability. Early in the development of
mathematical statistics, it very likely was the case that the relationship between
parameter and sample was confused with the relationship between cause and effect.
It is our guess that this is the reason such a firm distinction was originally
made between parameter and sample. One might raise an objection to this con-
jecture of ours. Are not missing variables to be regarded as the parameters in
their respective problems of statistical inference? Yes, but they have also the
aspect of being themselves outcomes of previous stochastic situations, so they
have the quality of statistics as well.

§2 The framework of statistical problems.

In this paper we regard all variables in statistical problems as random variables,
irrespective of whether their probability distribution is (partly or completely)
known or not. Let Q denote the set of all values taken by those variables, and
.S a o-field of subsets of Q which is considered to be that which makes variables
measurable. Let M be a set of possible distributions of the full set of variables,
which the problem concerned provides us; mathematically speaking, M is a set of
probability measures on S.

Let us consider some simple, typical examples to illustrate our approach.



