- CALCULUS

of the elementary functions
Merrill E. Shanks « Robert Gambill



Calculus
of the
Elementary
Functions

MERRILL E. SHANKS
ROBERT GAMBILL

Purdue Unaversity

HOLT, RINEHART AND WINSTON, INC.

New York Chicago San Francisco Atlanta
Dallas Montreal Toronto London Sydney



Calculus
of the
Elementary
Functions



Vi PREFACE

The intent throughout is to present the theoretical structure as simply as possible
without excessive concern about subtleties. Calculus, after all, is a certain kind of
calculation; calculus is the solving of problems. And so the student must do many
problems—about 1200 for the full year is minimal and about 1500 would seem
about right.

The student should read the text with pencil and paper at hand. Not only
may he need to fill in details of the text, but he may need to expand the Examples.
The earlier Examples are usually fully expanded. Later Examples leave out steps
that the student should be able to complete for himself.

We have tried to write a reasonably short book. Thick books discourage the
reader and excess verbiage can obscure ideas. Moreover short exposition permits
the teacher to expand on the text in his own style. Nevertheless, there is more than
enough material here for a year’s work even with well prepared students. The un-
starred sections comprise a standard course. Selections can be made from the starred
sections and problems to accommodate better students. These usually are either
harder computation or more theoretical, and sometimes contain material given
in advanced calculus.

Two other features are the exclusion of analytic geometry proper and the
separation of differential and integral calculus. It seems to us that the monster
texts that combine concepts of geometry, the derivative, and the integral into a
unified whole present such a kaleidoscopic pattern that the student is often confused.
In those books there may be one hundred or more pages devoted to pre-calculus
topics including perhaps discussiort of the real number system at a level for which
the student sees no use.The pre-calculus background in this book is provided in
Appendix A where the needed formulas and definitions are supplied for reference.
The text proceeds at once with the calculus and soon the student is doing interesting
problems. After all, there are but two basic techniques to be learned: differentia-
tion and integration. Once these are mastered the student has powerful tools to
attack problems which previously he could not touch. Too often students do not
feel this gain in power. We think that in part this has been because they do not
master one technique (differentiation) and learn to apply it before learning another.

Part I (Chapters 1 through 8) is devoted to the differential calculus of func-
tions of one variable. The only mention of integration is a short section on anti-
derivatives in Chapter 1. This is for the benefit of students taking physics at the
same time. However, if the instructor so desires, Chapter 9 on the definite integral
can be taken up immediately following Chapter 4.

Part IT (Chapters 9 through 13) is devoted to the integral calculus. It finishes
with the theory of infinite series, which was treated in an informal intuitive way
in Chapter 8.

Part IIT (Chapters 14 and 15) contains the standard topics of multivariate
calculus. Although vectors are mentioned, no vector notation is used nor knowl-
edge of vectors presupposed.

Rigorous proof has, on the whole, been relegated to the background and to
later portions of the text. (Appendixes C and D are concerned with limits and
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continuity and some proofs of basic theorems.) We are much more concerned that
a student have intuition about what is going on than that he remember proofs of
analysis. But we are concerned that he understand the theorems and that he is
able to verify the hypotheses in theorems and to apply them. Students arrive in
college with such diverse backgrounds and attitudes that if one were to present
calculus with complete rigor, one would have to provide the foundation for that
rigor—and calculus proper would be delayed unduly. In the early chapters theorems
about general functions are avoided where possible. In the early stages when one
deals exclusively with the elementary functions general limit theorems are unneces-
sary, and to the student often seemingly irrelevant. A student needs only to ‘“‘see”
the particular limits that occur in treating elementary functions. The theorems that
do occur are definitely utilized in problems—which is merely another way of saying
that the text (except for historical remarks) is purposefully tied to expected student
activity.

We have tried not to let the text get in the way of the students learning to
calculate. The logical development is direct, and such that details and proofs of
some theorems are easily supplied. We have tried to avoid the inclusion of anything
that might have to be unlearned later. All that is here is usable.

West Lafayette, Indiana Merrill E. Shanks
January 1969 Robert Gambill
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Sir Isaac Newton
(1642-1727)

Born December 25, 1642 in Woolthorpe
Entered Trinity College
Cambridge 1661
Undergraduate degree January, 1664
At home 1665-1667
Fellow at Trinity 1667-1669
Professor of mathematics, Lucasian chair,
at Trinity 1669-1696
Publishing date: Philosophiae Naturalis
Principia Mathematica (Mathematical Principles
of Natural Philosophy) 1687
Warden of the London Mint, 1696
Master of the Mint 1699-1727

Newton is generally regarded as one of the great intellects of ail time. His influence on the
development of mathematics and physics was decisive. He entered Cambridge knowing almost no
mathematics but advanced rapidly under the brilliant Isaac Barrow, his teacher.

The two years spent at home during a recurrence of the bubonic plague were fantastically
productive. During this time: (1) He invented the calculus, which he called the method of fluxions,
and had it in fairly complete form—for his own use. (2) He conceived the principle of universal
gravitation and sketched its main outlines. (3) He discovered the decomposition of white light into
a spectrum of colors and devised optical equipment.

On his return to Cambridge the pupil soon surpassed the teacher, and Barrow resigned his
Lucasian chair of mathematics in favor of Newton. There a long and productive period ensued in
which he published little material except at the urging of his friends. News of his activity was known
in England mainly through letters and the words of friends, while the continent remained unaware
of the method of fluxions.

2



CHAPTER |

THE DERIVATIVE

The Problem of Tangents

In the seventeenth century mathematicians were concerned (among other things)
with two major problems, “The Problem of Tangents” and ‘“The Problem of Area,”
whose nature and significance will become apparent as the reader progresses with
the text. The area problem will be introduced in Chapter 9 of Part II. Part I is
devoted to the solution of the Problem of Tangents and its application to a variety
of problems.

Actually there are two aspects to ‘“The

y Tangent line
Problem of Tangents.” 4 .
(1) Given a function f what should
we mean by a tangent line to the 1 f
graph of f? !
|
(2) Is there an easy way, a trick, for {
calculating what the tangent is? ! _
X, X
In this chapter we are concerned only °

with question (1). Chapter 2 deals with and
solves question (2). The reader may be
surprised, as he proceeds, with the apparent simplicity of the solutions to both
problems. But in the seventeenth century the problems were obscured by several

3



4 THE DERIVATIVE

deficiencies. In the first place suitable notation (that marvelous shorthand that
presents ideas concisely) was not well developed. Secondly, the real number system
was not adequately formulated. (Not until the nineteenth century did Dedekind
give a modern construction of the real numbers.) But the main obstacle to a solution
to problem (1) was the fact that the central concept required the notion of limit—
and limits were not properly understood. This, too, was to come later.

It is hard for the beginner to understand why calculus was not invented
earlier. Indeed, Isaac Barrow (the teacher of Newton) and the great Pierre Fermat
were aware of all the pieces of both problems, namely Tangents and Area. But the
fact remains that it was left to the genius of Newton and Leibniz to show the way
to handle both problems. [The historically interested reader is urged to consult
the references at the end of the chapter.]

There vs a question as to what the definition should be. Observe:

@’ T :

o0

>
>

In plane geometry the The intersection is one point Here line | crosses the graph

tangent line meets the yet Lis hardly tangent at R,. and nevertheless is the

circle in exactly one point Line I crosses the graph tangent at P,
l

P, l
P
f
f
57 X
Is line [ tangent? Here L is tangent at P, yet meets the graph often

The basic definition gives the tangent
line as a limit of secant lines. First we need a
word of explanation of the idea of limit.

A secant line through F,
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We say that a function f has a limit* L
as x approaches a if as x gets closer to a (that
is, |z — a | gets smaller, but does not become
zero), then f(x) gets closer to the number L
(that is, | f(z) — L | gets arbitrarily small).

This is expressed symbolically by :
X

|

X

pf————————

lim f(x) = L. f(x) approaches L as x approaches a,
z>a orf(x)- Lasx— a

DEFINITION  The tangent line to the graph f
of fat Py = (o, f(x0)) is the line through P,

whose slope is the limit of the slopes of the y
secant lines through (aq, f(z0)) and (z, f(z))
as x approaches x,.

Remark. This definition does not permit ver-
tical tangent lines, because in that case the
limit of the slopes of the secant lines does not
exist. Example 3 below illustrates this pos- 0 X
sibility.

xf————-XU

The tangent line is determined as soon as we know its slope, m, for then it is
the line with slope m passing through (o, f(w)).
The slope of a secant line is

(@) — f(w)

X — Xy

So as x approaches x, this number should approach the slope of the tangent line.
We formulate this in terms of ‘““increments,” a notation terminology that was
devised by Leibniz.

Az = z — xy = incrementt of z;
AYy =Y = Yo

= f(z) — f(x)

= f(xo + Az) — f(x0)

increment of y.

* We shall not try to be absolutely precise about limits in the text proper. Our concern is with
an intuitive grasp of the concepts. Moreover, in the special cases that concern us, the required
limit will be rather obvious because of the simplicity of the algebra involved.

A precise definition of limit and some theorems about limits can be found in Appendix C,
Section 1.
1 The symbol “Az,” read ‘“delta-z,” is a single quantity. Thus Az? will mean (delta~z)? = (Az)%
Az can be either positive or negative. If Az is negative, the point z lies “to the left” of z,.
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(x, f(x))
= (xg + Ax, f(x o + AX))

(X F(Xg))

Then the slope of the secant line is

Ay  f(zo + Az) — f(20)
Mgecant = - = .

Az Ax

In particular cases we can see that this slope approaches a limit as Az approaches
0. This limit is then the slope of the tangent line.

Example 1 Ify = f(z) = 2 —

2z — 27 then the slope of the tan- by
gent line at (3, £) is the limit of
slopes of secant lines.
Herexo = %, 9= %, and
Ay = f(x + Az) — f(x0)
= {34 Ar) — 1
fG+ Az) — (1/2, 3/4)
=2—2(G+Az) —
G+ Az)2— 3 : ' : . : -
= —3Az — Az j &\
Ay
— = —3— Az
Az

And now it is easy to see what happens to Ay/Az as Az — 0. Observe that both
Ay and Az approach 0, so we could not have evaluated the limit simply by setting
Az = 0 and Ay = 0 for then we would have obtained the meaningless symbol 0/0.
Instead, we have so simplified the form of Ay/Az that we can see at once its limit
as Az — 0. Clearly the limit is —3, and so

m = slope of the tangent line at (3, 2) = —3,

and an equation of the tangent line is:

y—§=-3@—1% or y+38—1=0
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Example 2 In the Example 1 we found the slope of the tangent at a specific
point. Usually we find the slope at an arbitrary point (z, f(z)). In this way we
obtain a formula for the slope at any point. For example, if

1
y=f@)=z+ -,
x
then 8y = [+ An) = 1@) = (a4 aat ——) = (a+ )
n y=f(z z) = |z ST As z ;
1 1 —Az
Ry v iy ye
Hence, Y
~ FO T
Az @+ Az) (2, 5/2)

Again, as in Example 1, we have so +
simplified Ay/Az that its limit as Az ap-
proaches 0 is clear. The slope of the tan- ' ' ' '
gent at (z,z + 1/z) = m = 1 — 1/22
For example, the slope at (2, 3) ism = £, 1
and an equation of the tangent line at this
point is: 1

¥

y—3=1@—2)

or
y—3z—1=0.

Example 3 A secant line toy = f(z) =
2?3 at (0, 0) has slope

2/8
By _ (ot e

= — = = AX, 2/3
m Az Az — 0 > (Ax, (Ax)?'3)

Now, as Az — 0 the slope does not ap-

proach a limiting value. Nevertheless, \ X
the inclination a of the secant line ap- \\
proaches 7/2.

In such examples we agree that the
tangent line at (zo, f(xo)) is the vertical
line = x,. In this example zo = 0.



