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College Trigonometry



Preface

This book was written with the idea of providing an uncluttered and
mathematically sound introduction to the basic ideas of trigonometry,
emphasizing the important concepts, without attempting to initiate the
student into the mysteries of higher algebra and set theory. To this end, we
combine the classical, intuitive approach with the important facets of the
modern point of view.

Trigonometry is viewed as the study of the trigonometric functions. The
general notion of a function is developed with stress placed upon understanding
rather than set theoretical niceties. Real numbers are placed in their natural
setting—as the results of measurements. These two topics are treated in some
detail at a concrete level, to lay the foundation not only for the rest of the
text but also for the calculus. Complex numbers are introduced as a natural
extension of the real number system, without the complication of an artificial
construction by way of ordered pairs.

The trigonometric functions are introduced via the trigonometric point.
This is the “modern way,” and seems to have some mathematical if not peda-
gogical advantages over the classical one. In line with this approach, the
addition formulas are motivated and developed by examining rotations of
the plane. Angles are not ignored, however, and right triangle trigonometry
plays its just role.

In the spirit of the contemporary functional approach, logarithms are
developed from consideration of the inverse of the exponential function, and
the inverse trigonometric functions from consideration of the inverses of
portions of the trigonometric functions.

For the benefit of the student, many examples are provided, and answers
are given for odd-numbered problems.

Las Cruces, New Mexico Fred Richman
Carol Walker
Elbert Walker



Contents

The Real Numbers

1-1
1-2
1-3
14
1-5

Introduction

Measuring

Decimal Representation

Negative Numbers, Absolute Value, and Order
Rounding and Significant Digits

Functions and Graphs

2-1
2-2
2-3
24
2-5

The Concept of a Function
Formulas and Tables

The Cartesian Plane
Graphs of Functions
Graphs of Equations

Trigonometric Functions

3-1
3-2
3-3
34

The Trigonometric Point

The Trigonometric Functions
Graphs of Trigonometric Functions
Aids in Graphing

Right Triangle Trigonometry

4-1
4-2
4-3
4-4
4-5

Angles

Trigonometric Functions as Ratios
Tables of Trigonometric Functions
Interpolation

Solving Right Triangles

Trigonometric Identities

5-1
5-2
5-3
5-4

The Fundamental Identities

The Addition Formulas

Double and Half Angle Formulas
Miscellaneous Formulas

0NN =

13
17
21
25
30

35
42
47
51

59
63
67
71
74

79
82
88
90



6 Complex Numbers

6-1 The Square Root of Minus One
6-2 Graphical Representation of Complex Numbers
6-3 Powers and Roots of Complex Numbers

7  Exponents and Logarithms

7-1 Exponential Functions

7-2 Inverse Functions

7-3 Logarithmic Functions

7-4 Computations with Logarithms

7-5 Logarithms of the Trigonometric Functions

8 Solution of General Triangles

8-1 The Law of Sines

8-2 The Law of Cosines

8-3 The Law of Tangents
84 Semiperimeter Formulas

9 Inverse Trigonometric Functions and Trigonometric Equations

9-1 The Inverse Sine and Cosine Functions

9-2 The Inverse Tangent, Cotangent, Secant, and Cosecant Functions
9-3 Trigonometric Equations

9-4 Simple Harmonic Motion

Appendices

Table I. Logarithms of Numbers
Table II. Values of Trigonometric Functions
Table III. Logarithms of Trigonometric Functions

Answers to Selected Problems

Index

93
96
99

103
109
113
116
120

125
129
132
133

137
142
147
151

158
160
165

171

197



1| The Real Numbers

1-1 Introduction

Historically trigonometry is the study of triangles, particularly right triangles,
and the relations between the lengths of their sides and the sizes of their angles.
It was developed mainly for use in surveying and astronomy, to help measure
the earth and the sky. In the study of right triangles certain numbers came to be
associated with angles. These numbers did not directly measure the size of the
angles but rather the relationships between the sides of any right triangle
having those angles. Thus the notion of a trigonometric function was born.

The child has outgrown the parent in this case, since the trigonometric
functions have come to have far-reaching applications—in engineering,
physics, and higher mathematics—that completely overshadow their use in
the study of triangles. Even the very notion of trigonometric functions no
longer depends on their right triangle genealogy, since they may be thought
of purely in terms of numbers and not in terms of angles. Thus trigonometry
has come to mean the study of the trigonometric functions, and this is the
point of view that we shall take: the fundamental objects of study in this book
are the trigonometric functions, not triangles. However, the important con-
nections between these functions and triangles are not to be ignored, and they
will be brought out in Chapters 4 and 8.

Since our concern is with trigonometric functions, and since these are
functions of real numbers, we need to know what real numbers are and what
functions are. This chapter presents a quick review of some of the basic
properties of real numbers.
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1-2 Measuring

The numbers we use to measure things are called rea/ numbers. In order to
measure lengths we first decide upon a unit length which we represent by
the number 1. All lengths are measured in terms of the unit length. This unit
length might be an inch, a foot, a mile, a light year, or whatever. Suppose,
for example, we have chosen an inch-long segment as our unit length. Here is
our unit length.

M
Now suppose we are faced with another length:
@

How do we measure it? We construct a “ ruler ” by marking off a line at
intervals of one inch.

-

: -
1 2 3 4 ©)

1
—

0
To measure a length we line up one end with the point marked 0 on our
ruler and see where the other end lands. Thus to measure the segment in
(2) we simply place our ruler next to it and verify immediately that it is three
inches long. The numbers 0, 1, 2, 3, ... labeling these marks are called integers.

3 . —1 4
0 1 2 3 4

What happens if the length we are trying to measure falls somewhere
between two of the marks on our ruler? For example,

' } 1 (5
4

The length is somewhere between three and four inches. If we wish to be
more precise, we shall have to put more marks on our ruler. One way is to
divide the interval from 3 to 4 into equal sections like

1 | i)
1 1 1

3 4

or 3 T T i (6)

or |F—t—m—i
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In the first case we label the new point “ 34,” since we divided the segment
into two equal sections. The points in the second case would be labeled 3% and
3%, since the segment was divided into three equal sections. Similarly, the
points in the last case would be labeled 3%, 32, and 33. Notice that the point
labeled 32 is the same one labeled 3%. These two labels, 32 and 34, are different
ways of referring to the same length. We may continue in this way to mark
our ruler at all of the points which can be labeled by fractions. A few are
pictured below.
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The numbers used to label these marks—the integers and the fractions—
are called rational numbers. The distinguishing feature of a rational number is
that it can be written as a quotient a/b with a and b integers. For example,
1 7 4
5= 3’ 32—2, and 4—1.

With the rational numbers we can measure many more lengths than
we could with integers alone. Can we measure all lengths? This question
provoked a stormy controversy among the ancient mathematicians. Pythagoras
was reputed to have shown that if a right triangle had sides which were one
inch long, then the square of the length of the hypotenuse was equal to 2,
the sum of the squares of the lengths of the two sides.

:{i h\'jz:lz_,,ll:z (8)

p—1—-

If we could measure the hypotenuse of this triangle with our ruler which is
marked only with rational numbers, then we could write / as a/b, where a and
b were integers. This would give us integers a and b, such that (a/b)? = 2.
However, the ancients were able to show that this is impossible. Hence this
real number, which we write \/5 and call ““ the square root of 2,” is not yet
marked on our ruler. If we are to measure everything, we shall have to put it
on the ruler, along with a host of other numbers which are missing. These
missing numbers are called irrational numbers. The numbers \/ 2 and & are
examples of such numbers. Their distinguishing feature is that they cannot be
written as a quotient a/b with ¢ and b integers.
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1-3  Decimal Representation

Decimal representation, or expansion, is a unifying technique for labeling
real numbers. All of the real numbers, both rational and irrational, have a

decimal representation. To see how it works, let us consider the number \/ 2.
Since the square of ﬁ lies between the square of 1 and the square of 2

(12 =1, (/2)> = 2 and 22 = 4), we know that /2 must lie somewhere be-
tween 1 and 2.

— ©)

o)

To get a better idea of where \/i is, we divide the interval from 1 to 2
into ten equal segments (hence the terminology ‘““decimal,” from the Latin
word for ten).

s 16 17 18 19 2
(10)

We label the division points 1.1, 1.2, 1.3, etc., and observe that, in the
fraction notation, these are the points 144, 155, 153, and so on. We see that
V/Z lies between 1.4 and 1.5. This is easily verified by checking that (1.4)2 =
1.96 which is less than 2, while (1.5)% = 2.25 which is greater than 2.
Now, breaking the interval from 1.4 to 1.5 into ten equal parts,

vz
141 / 1.43 1.45 1.47 1.49
Lo)
A4

1.4 1.42 1.44 1.46 1.48 1.5

(1n

we find thatﬁ lies between 1.41 and 1.42, the points labeled 1-%L and

100
1 %% by the fractions. Once more we divide into ten equal pieces

vz

1.411 1.413 g 1.415 1.417 1.419

1.41 1.412 1.414 1.416 1418 1.42

(12)
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and find that \/E lies between 1.414 and 1.415. Continuing in this fashion
we may construct an infinite decimal expansion 1.414213.... This expansion

means that VQ is at least as big as any of the numbers

1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, ...

but no bigger than any of the numbers
2, 1.5, 1.42, 1.415, 1.4143, 1.41422, 1.414214, ....

Similarly, to say that the decimal expansion of m is 3.14159265358979...
simply means that n lies between 3 and 4, between 3.1 and 3.2, between
3.14 and 3.15, between 3.141 and 3.142, between 3.1415 and 3.1416, and so on.

If you know the first few digits in the decimal representation of a number,
you know approximately what that number is. For example, if the decimal
representation of a number x starts out 3.1652, then x can be no less than
3.1652 and no greater than 3.1653. Indeed, the way the fourth digit 2 was
determined was by dividing the interval from 3.165 to 3.166 into ten equal
pieces and observing that x lay between the points labeled 3.1652 and 3.1653.
Approximations will be discussed in more detail in Section 1-5.

To every point on our ruler we have made correspond a possibly infinite
decimal representation. On the other hand, suppose we are given an infinite
decimal, for example 0.123456789101112131415161718192021222324252......
(Mathematicians are fond of using three dots to mean ““etc.” when the reader
should know what follows, e.g., 1,2,3,4,5,...0r2,4,8,16,32,64,128, ...,
or in the example above which is obtained from the numbers 1, 2, 3, 4, 5, 6,
7, 8,9, 10, 11, 12, 13, 14, 15, 16, ... by removing commas and spaces.) Is
there some point on our ruler which is labeled by this infinite decimal?
That is, is there a point which is at once between 0.1 and 0.2, between 0.12 and
0.13, between 0.123 and 0.124, between 0.1234 and 0.1235 and so on? There
is no pressing geometric reason for such a point to exist, as there was for
1.414213.... Yet somehow we feel (or perhaps you don’t) that there is some
point which separates the points 0.1, 0.12, 0.123, 0.1234, 0.12345, ... from
the points 0.2, 0.13, 0.124, 0.1235, 0.12346, ... .

0.123 0.124

0.1 0.12 \v 0.13 0.2

(13)

This point would be labeled by the infinite decimal 0.1234567891011 ... .
We shall adopt the view that indeed such a point exists and that there is a
point on our ruler corresponding to any decimal expansion. To do so does
not offend common sense at least and is a matter of great convenience.
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One last thing needs to be cleared up before we identify the real numbers
with the decimal representations of lengths. What is the point represented by
1.9999999. .. ? This point is between 1 and 2, between 1.9 and 2, between
1.99 and 2, between 1.999 and 2, and so forth. The only point it could possibly
be is the point labeled 2. Thus we have two different decimal representations
of the point 2. Similarly, 1.569999999... must label the same point as 1.57.
With this in mind we can identify real numbers (or, looking ahead, non-
negative real numbers) with possibly infinite decimals and say that two real
numbers are equal, if the decimals are the same or if they are related to each
other as are, for example, 1.4329999999... and 1.433.

Problems 1-3

1. If the decimal expansion of a real number begins with 2.3156, what can you say
about the number?

2. If the decimal expansion of a real number begins with 3.1427, what can you say
about the number ?

3. The first five digits in a decimal representation of x are 0.76548; the first four
digits in a decimal representation of y are 0.7655. What can you say about y as
compared to x? Why?

4. The first five digits in a decimal representation of x are 0.35916; the first four
digits in a decimal representation of y are 0.3591. What can you say about y
as compared to x? Why?

5. The first four digits in a decimal representation of x are 0.2719; the first four
digits in a decimal representation of y are 0.2720. What can you say about y
as compared to x? Why?

6. The first three digits in a decimal expansion of x are 0.357; the first three digits
in a decimal expansion of y are 0.356. What can you say about y as compared
to x? Why?

7. Show that the first four digits in a decimal representation of 4/ 7 are 2.645.

8. Show that the first seven digits in a decimal representation of v/ 2 are 1.414213.
Why do some tables give 1/2 as 1.414214?

1-4 Negative Numbers, Absolute Value, and Order

Walk 5 miles north and 6 miles south; where are you? You earn $110 and
spend §$125; how much money have you accumulated? The temperature
was 5° and dropped 7°; what is the temperature now ? Questions like these
led to the development of the notions of ““directed distances” and “signed
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numbers.” The real numbers that we have looked at so far did not appear
quite adequate for measuring along a line; not only do you want to know how
far away a point is but in what direction. We talk about 1 mile south, $15 in the
red, or 2° below zero.

An efficient procedure for indicating direction along with distance is to
choose one direction to be positive (e.g., north, gain as opposed to loss, above
zero) and measure distances or amounts in that direction as we did before.
The other direction we call the negative direction. We measure distances that
way with numbers that are somehow distinguished: by writing them with
red ink, for example, or, as is most commonly done, by prefixing them with a
dash (minus sign) as —3, —7.2, —1/2, —=. In this context numbers represent
two things, a distance and a direction, the direction being indicated by the
presence or absence of a minus sign.

We can extend our ruler to enable us to measure in both directions. This
extended ruler is often referred to as the number line. It looks like this:

-7 235 4% -3 1.71

-3 -2 -1 0 1 2

(14)

The points on the number line correspond to the real numbers, positive,
negative, and zero. The negatives of integers are also called integers; the
negatives of rational numbers are rational numbers, and the negatives of
irrational numbers are irrational.

The absolute value of a real number is the distance it represents, regardless
of direction. If a is a real number, we denote its absolute value by |a|. Thus
12| = 2, |—3| = 3, |—2/3] = 2/3, and so on. If we think of the real numbers as
being points on a line, then |a| is simply the distance from a to 0. More gener-
ally, a simple geometric interpretation is available for | — b|: it is the distance
between a and b. A few examples illustrate this: |3 — 5| = 2 = distance
between 3 and 5; |3 + 5| = |3 — (—5)| = 8 = distance between 3 and —35;
|—3 — 5] = 8 = distance between —3 and 5.

An important property of the real numbers is that they are ordered; i.e.,
we know what it means for a number to be bigger than another. If a is bigger
than b, we write @ > b or b < a (the smaller part of the symbol *“ > > points
to the smaller number). So 5> 3, 2 <=, and so on. What about —1 and
—1000? If I am $1 in debt I have more money than if I am $1000 in debt.
Hence we write —1 > —1000. The rule is: @ > b if a lies to the right of b
on the number line. Hence a number a is positive if @ > 0 and negative if
a<0.

The notion of ““ positiveness  is the key to the notion of order. We have
6 > 2 because 6 = 2 + 4 and 4 is positive. If you add a positive number to 2,
you get something bigger than 2; conversely, if @ > 2, then @ — 2 is positive
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and @ = 2 + (a — 2). In general we can say that
a > b if and only if a — b is positive. (15)

For example, 5> 1 because 5 — 1 =4 is positive; —3 > —4 because -3
— (—4) = —3 + 4 = 1lis positive.

If we write a < b, we mean that a is less than b; in particular we deny
that a and b are equal. Thus it is not true that 5 < 5. If we wish to include the
possibility that @ and b are equal, we write @ < b which is read, ““a is less than
or equal to b.” The symbol < is a combination of < and =, which serves to
remind us what it means. Similarly, “a > b” means “a>b ora=>5."

Problems 1-4

1. Arrange the following numbers in ascending order.
1, —3,mV2,3/5 —1.4,2.7, —5/3.

2. Arrange the following numbers in ascending order.
1.6,0, —2, 7/2, —9/5, 5/3, —V/ 2.

3. List all numbers whose absolute value is 17.

4. List all numbers whose absolute value is
a) 1/2, b) 0, c) —9.

5. Is the statement, “If a > b, then a + x > b’ true or false? Why?

6. Discuss the following statements.
a) If a > |b|, then a > b.
b) If |a| > |b|, then a > b.
¢) Ifa>b, thena+ x > b+ x.

7. Show that —3 > —35, using the criterion that a > b exactly when a— b is
positive.

8. Verify or deny the following statements using the criterion that a > b exactly
when a — b is positive.
a) 3>-—2, b) 2> —3, c) 2>|-3|,
d —5>-17, e) —8>4, f) 3> —5.

1-5 Rounding and Significant Digits

In practice we do not deal with numbers like 3.14159265358979. .. . Suppose
we have a wheel whose diameter is 5 feet and wish to know its circumference.
Now we know that the circumference is Sn. However, in all probability
we really don’t know whether the diameter of the wheel is 5 feet or, say,
5.0000001 feet (and we might not care even if we did). In this situation it
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would be pointless to use all digits in the expansion of «, even if this were
possible, to compute the circumference. Depending on how much precision
we demanded, and could use, we would approximate = by 3.14 or 3.1416 or
3.14159, and so on. This process is known as rounding or rounding off.

To round off & to two decimal places isto find a number with zwo digits
after the decimal point, which is as close as possible to 7. Since we know that
7 lies between 3.14 and 3.15 (why ?), we need only determine which of these
numbers is closer to n. But we also know that 7 lies between 3.141 and 3.142,
both of which are closer to 3.14 than to 3.15. Hence = is closer to 3.14 than
to 3.15 and thus 3.14 is as close as we can come to 7 using numbers with two
digits after the decimal point. We say that 7 is 3.14 fo two decimal places.

Similarly, we say that = is 3.1416 fo four decimal places, since 3.1416 is as
close as we can come to 7 using numbers with four digits after the decimal
point. Here we know that 7 is between 3.1415 and 3.1416. To decide which of
these numbers is closer to © we look at one more place in the decimal expan-
sion. This tells us that 7 lies between 3.14159 and 3.14160, and thus 3.1416is a
better approximation than 3.1415.

Notice what we do in these two examples. In the first, to round = te two
decimal places we look at the first three places in the expansion of x,

3.141.

Since the third digit after the ’decimal point is 1, we see that n is 3.14 to two
decimal places. Similarly, all of the numbers

3.140, 3.141, 3.142, 3.143, 3.144

are 3.14 to two decimal places and so is any number whose decimal expansion
starts out in any of these ways. (Why?)
On the other hand, the numbers

3.146, 3.147, 3.148, 3.149

are clearly closer to 3.15 than to 3.14, as is any number whose decimal
expansion begins in one of these fashions. The key as to whether to round
down to 3.14 or to round up to 3.15 lies in the third digit. If this is less than 5
we round down; if it is greater than 5 we round up. When we rounded 7 to two
decimal places, we rounded down to 3.14 because the third digit is less than 5.
When we rounded to four decimal places, we rounded up to 3.1416 because
the fifth digit is greater than 5.

What if the crucial digit is 5? This occurs, for example, if we wish to
round 7 to three places. Here we must choose between 3.141 and 3.142. If we
go to four places, we have 3.1415 which is equally close to 3.141 and 3.142.
When this happens we must consider the rest of the expansion. If a// the re-
maining digits were 0, for example 3.1415000000000. .., then the number is
precisely half way between 3.141 and 3.142. In this situation there is no reason
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to choose the one approximation over the other. One rule of thumb, which has
the advantage of overestimating as often as underestimating, is to round to
the number which ends in an even digit, in this case to 3.142. However, if any
of the remaining digits in the expansion are different from 0, as is the case
for m, then you should round up. For example, 3.141500000100..., since
it is greater than 3.1415, is closer to 3.142 than to 3.141 (although not very
much so).

We summarize these ideas with a fresh example. Suppose we wish to
round to two decimal places. If the first three places in the expansion are

7.160, 7.161, 7.162, 7.163, or 7.164,
we round to 7.16. If the first three places are
7.166, 7.167, 7.168, or 7.169,

we round to 7.17. If the first three places are 7.165, we round to 7.17 if there
are any nonzero digits in the remainder of the expansion. If, on the other
hand, the number is precisely 7.165 then we (may) apply our rule of thumb
and round to 7.16 since this ends in an even digit.

A similar procedure applies to rounding off a number in any place.
Consider the number 567.8962. Rounded off to three decimal places, or in the
third decimal place, or in the thousandths place, 567.8962 is 567.896. Rounded
off to two decimal places, or in the hundredths place, 567.8962 is 567.90;
rounded to one decimal place, or in the tenths place, it is 567.9. We may also
round 567.8962 in the units place, that is, to the nearest integer. Here we
would get 568 since that is the closest integer to 567.8962. Similarly, we may
round 567.8962 to the tens place, that is, to the nearest integer which is a
multiple of ten; if we do this we get 570. In the same spirit we say that 567.8962
is 600 to the nearest hundred, 1000 to the nearest thousand, and 0 to the nearest
ten thousand; these statements mean that 567.8962 is nearer to 600 than to
500 or 700, nearer to 1000 than to 0 or 2000, and nearer to 0 than to 10,000.

Computation with approximate numbers, that is, numbers which are
approximations, often yields results which appear more precise than they
actually are. Let us return to our 5-foot diameter wheel. Suppose we measured
the diameter as carefully as we could and found it was, in fact, 5.03 feet to
within a hundredth of a foot; that is, we know that 5.03 is closer to the true
diameter of the wheel than is either 5.02 or 5.04—and that is the full extent
of our knowledge. In computing the circumference we might use 3.1416 as an
approximation to m. Then we would estimate the circumference to be
(3.1416) - (5.03) = 15.742248. Notice that we could only measure the diameter
up to one hundredth of a foot while our estimate of the circumference seems
to be accurate up to a millionth of a foot! The problem is that the last few
digits in our solution have no significance. Indeed, for all we know, the diam-
eter might be anywhere from 5.025 to 5.035. If it were the former, we would
compute the circumference to be (3.1416) - (5.025) = 15.72654; whereas if it



