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Preface

This book concludes five years of original research at the University of Bologna on the use of
copulas in finance. We would like these results to be called the Bologna school. The problem
tackled arises directly from financial applications and the fact that almost always in this field
we are confronted with convolution problems along with non-normal distributions and non-
linear dependence. More explicitly, almost always in finance we face the problem of evaluating
the distribution of

X+ ¥

where X and Y may have arbitrary distributions and may be dependent on each other in quite
a strange fashion. Very often, we may also be interested in the dependence of this sum on
either X or Y. The Bologna school has studied the class of convolution-based copulas that is
well suited to address this kind of problem. It is easy to see that this operates a restriction on
the choice of copulas. In a sense, convolution-based copulas address a special compatibility
problem, enforcing coherence in the dependence structure between variables and their sum.
This compatibility issue is paramount and unavoidable for almost all the applications in
finance. The first concept that comes to mind is the linear law of price enforced by the
fundamental theorem of asset pricing: in order to avoid arbitrage, prices of complex products
must be linear combinations of the primitive products constituting the replicating portfolio.
In asset allocation, portfolios are also strictly linear concepts, even though they may include
(and today they typically do) option-like and other non-linear products whose distribution is
far from Gaussian and whose dependence on the other components of the portfolio is not
Gaussian either. Moreover, trading and investment activities involve more and more exposures
to credit risk that are non-Gaussian by definition: this was actually the very reason for copula
function applications to finance in the first place. But, even in the case of credit, losses may
be linked by the most complex dependence structure, but nevertheless they cumulate one
after the other by a linear combination: computing cumulated losses is again a convolution
problem. Finally, linear aggregation is crucial to understand the dynamics of markets. From
this viewpoint, finance theory has developed under the main assumption of processes with
independent increments: convolution-based copulas may allow us to considerably extend the
set of possible market dynamics, allowing for general dependence structures between the price
level at a given point in time and its increment (the return) in the following period: describing
the distribution of the price at the end of a period is again a convolution problem.
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The main message of this book is that copulas remain a flexible tool for applications in
finance, but this flexibility is finite, and the Bologna school sets the frontier of this flexibility
at the family of convolution-based copulas.

Chapters 1 and 2 review the general problem of dependence and correlation in finance. More
particularly, Chapter 2 specializes the analysis to a review of the basic concepts of copulas,
as they have been applied to financial problems until today. Chapters 3 and 4 introduce the
theory of convolution-based copulas, and the concept of C-convolution within the mainstream
of the Darsow, Nguyen, and Olsen (DNO) application of copulas to Markov processes. More
specifically, Chapter 3 addresses theory and Chapter 4 deals with the application to econo-
metrics. Chapters 5, 6, and 7 discuss applications of the approach in turn to the problems
of: (i) evaluating multivariate equity derivatives; (ii) analyzing the credit risk exposure of a
portfolio, (iii) aggregating Value-at-Risk measures across risk factors and business units. In
all these chapters, we exploit the model to address dependence both in a spatial and temporal
perspective. This twofold perspective is entirely new to these applications, and may easily
be handled within the set of convolution-based copulas. Chapter 8 concludes by surveying
other methodologies available in the mathematical finance and probability literature to set a
dependence structure among processes: these approaches are mainly in continuous time, and
raise the question, that we leave for future research, of whether they represent some or all the
possible solutions that one would obtain by taking the continuous time limit of our model,
which is defined in discrete time.

We conclude with thanks to our colleagues in the international community who have helped
us during these years of work. Their support has been particularly precious, because our work
is entirely free from government support. Nemo propheta in patria. As for comments on this
manuscript, we would particularly like to thank, without implication, Xiaohong Chen, Fabrizio
Durante, Marius Hofert, Matthias Scherer, Bruno Remillard, Paramsoothy Silvapulle, and an
anonymous referee provided by John Wiley. And we thank our readers in advance for any
comments they would like to share with us.
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1

Correlation Risk in Finance

Over the last decade, financial markets have witnessed a progressive concentration of focus on
correlation dynamics models. New terms such as correlation trading and correlation products
have become the frontier topic of financial innovation. Correlation trading denotes the trading
activity aimed at exploiting changes in correlation, or more generally in the dependence
structure of assets and risk factors. Correlation products denote financial structures designed
with the purpose of exploiting these changes. Likewise, the new term correlation risk in risk
management is meant to identify the exposure to losses triggered by changes in correlation.
Going long or short correlation has become a standard concept for everyone working in
dealing rooms and risk management committees. This actually completes a trend that led the
market to evolve from taking positions on the direction of prices towards taking exposures
to volatility and higher moments of their distribution, and finally speculating and hedging on
cross-moments. These trends were also accompanied by the development of new practices to
transfer risk from one unit to others. In the aftermath of the recent crisis, these products have
been blamed as one of the main causes. It is well beyond the scope of this book to digress on the
economics of the crisis. We would only like to point out that the modular approach which has
been typical of financial innovation in the structured finance era may turn out extremely useful
to ensure the efficient allocation of risks among the agents. While on the one hand the use of
these techniques without adequate knowledge may represent a source risk, avoiding them for
sure represents a distortion and a source of cost. Of course, accomplishing this requires the
use of modular mathematical models to split and transfer risk. This book is devoted to such
models, which in the framework of dependence are called dependence functions or copula
Junctions.

1.1 CORRELATION RISK IN PRICING AND RISK MANAGEMENT

In order to measure the distance between the current practice of markets and standard textbook
theory of finance, let us consider the standard static portfolio allocation problem. The aim is
to maximize the expected utility of wealth W at some final date T using a set of risky assets,
Si,i =1, ..., m. Formally, we have

Ep [U (Rf + ) wiR; — Rf))] ,

i=1

where R; = In(S;(T)/S;(0)) are the log-returns on the risky assets and Ry is the risk-free
rate. The asset allocation problem is completely described by two functions: (i) the utility
function U(.), assumed strictly increasing and concave; (ii) the joint distribution function of
the returns P. While we could argue in depth about both of them, throughout this book the
focus will be on the specification of the joint distribution function. In the standard textbook
problem, this is actually kept in the background and returns are assumed to be jointly normally
distributed, which leads to rewriting the expected utility in terms of a mean—variance problem.
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Nowadays, real-world asset management has moved miles away from this textbook problem,
mainly for two reasons: first, investments are no longer restricted to linear products, such as
stocks and bonds, but involve options and complex derivatives; second, the assumption that the
distribution of returns is Gaussian is clearly rejected by the data. As a result, the expected utility
problem should take into account three different dimensions of risk: (i) directional movements
of the market; (ii) changes in volatility of the assets; (iii) changes in their correlation. More
importantly, there is also clear evidence that changes in both volatility and correlation are
themselves correlated with swings in the market. Typically, both volatility and correlation
increase when the market is heading downward (which is called the leverage effect). It is the
need to account for these new dimensions of risk that has led to the diffusion of derivative
products to hedge against and take exposures to both changes in volatility and changes in
correlation. In the same setting, it is easy to recover the other face of the same problem
encountered by the pricer. From his point of view, the problem is tackled from the first-order
conditions of the investment problem:

Ep [U’ (Rf + ) wi(Ri — Rf)) (Ri — Rf)] =0=Eq[R — Ry],

i=1
where the new probability measure Q is defined after the Radon—-Nikodym derivative

?9 it U (Rf * Z;”:l w;(R; — Rf))
P  Ep [U, (Rf + 3 wi(R; — Rf))]'

Pricers face the problem of evaluating financial products using measure Q, which is called
the risk-neutral measure (because all the risky assets are expected to yield the same return
as the risk-free asset), or the equivalent martingale measure (EMM, because Q is a measure
equivalent to [P with the property that prices expressed using the risk-free asset as numeraire are
martingale). An open issue is whether and under what circumstances volatility and correlation
of the original measure [P are preserved under this change of measure. If this is not the case,
we say that volatility and correlation risks are priced in the market (that is, a risk premium is
required for facing these risks). Under this new measure, the pricers face problems which are
similar to those of the asset manager, that is evaluating the sensitivity of financial products to
changes in the direction of the market (long/short the asset), volatility (long/short volatility)
and correlation (long/short correlation). They face a further problem, though, that is going to
be the main motivation of this book: they must ensure that prices of multivariate products are
consistent with prices of univariate products. This consistency is part of the so-called arbitrage-
free approach to pricing, which leads to the martingale requirement presented above. In the
jargon of statisticians, this consistency leads to the term compatibility: the risk-neutral joint
distribution @ has to be compatible with the marginal distributions Q;.

Like the asset manager and the pricer, the risk manager also faces an intrinsically multivariate
problem. This is the issue of measuring the exposure of the position to different risk factors.
In standard practice, he transforms the financial positions in the different assets and markets
into a set of exposures (buckets, in the jargon) to a set of risk factors (mapping process). The
problem is then to estimate the joint distribution of losses on these exposures and define a risk
measure on this distribution. Typical measures are Value-at-Risk (VaR) and Expected Shortfall
(ES). These measures are multivariate in the sense that they must account for correlation
among the losses, but there is a subtle point to be noticed here, which makes this practice
obsolete with respect to structured finance products, and correlation products in particular.
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A first point is that these products are non-linear, so that their value may change even though
market prices do not move but their volatilities do. As for volatility, the problem can be handled
by including a bucket of volatility exposures for every risk factor. But there is a crucial point
that gets lost if correlation products are taken into account. It is the fact that the value of
these products can change even if neither the market prices nor their volatilities move, but
simply because of a change in correlation. In fact, this exposure to correlation among the
assets included in the specific product is lost in the mapping procedure. Correlation risk then
induces risk managers to measure this dimension of risk on a product-by-product basis, using
either historical simulation or stress-testing techniques.

1.2 IMPLIED VS REALIZED CORRELATION

A peculiar feature of applications of probability and statistics to finance is the distinction
between historical and implied information. This duality, that is found in many (if not all)
applications in univariate analysis, shows up in the multivariate setting as well. On the one
side, standard time series data from the market enable us to gauge the relevance of market co-
movements for investment strategies and risk management issues. On the other side, if there
exist derivative prices which are dependent on market correlation, it is possible to recover
the degree of co-movement credited by investors and financial intermediaries to the markets,
and this is done by simply inverting the prices of these derivatives. Of course, recovering
implied information is subject to the same flaws as those that are typical of the univariate
setting. First, the possibility of neatly backing out this information may be limited by the
market incompleteness problem, which has the effect of introducing a source of noise into
market prices. Second, the distribution backed out is the risk-neutral one and a market price
of risk could be charged to allow for the possibility of correlation changes. These problems
are indeed compounded and in a sense magnified in the multivariate setting, in which the
uncertainty concerning the dependence structure among the markets adds to that on the shape
of marginal distributions.

Unfortunately, there are not many cases in which correlation can be implied from the
market. An important exception is found in the FOREX market, because of the so-called
triangular arbitrage relationship. Consider the Dollar/Euro (eys, g), the Euro/Yen (e y) and
the Dollar/Yen (eys, y) exchange rates. Triangular arbitrage requires that

€US,E = €E,Yeys.y-

Taking logs and denoting by oys. £, 0k vy, and oys y the corresponding implied volatilities, we
have that

2 2 2
Ous,e =Ofy +0usy + 200k y0us,y,

from which

2 2 2
o s 595y 77 %03,y

20E,yous.y

is the implied correlation between the Euro/Yen and the Dollar/Yen priced by the market.
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1.3 BOTTOM-UP VS TOP-DOWN MODELS

For all the reasons above, estimating correlation, either historical or implied, has become the
focus of research in the last decade. More precisely, the focus has been on the specification of
the joint distribution of prices and risk factors. This has raised a first strategic choice between
two opposite classes of models, that have been denoted fop-down and bottom-up approaches.
In all applications, pricing of equity and credit derivatives, risk management aggregation and
allocation, the first choice is then to fit all markets and risk factors with a joint distribution and
to specify in the process both the marginal distributions of the risk factors and their dependence
structure. The alternative is to take care of marginal distributions first, and of the dependence
structure in a second step. It is clear that copula functions represent the main tool of the latter
approach. It is not difficult to gauge what the pros and cons of the two alternatives might be.
Selecting a joint distribution fitting all risks may not be easy, beyond the standard choices of the
normal distribution for continuous variables and the Poisson distribution for discrete random
variables. If one settles instead for the choice of non-parametric statistics, even for a moderate
number of risk factors, the implementation runs into the so-called curse of dimensionality.
As for the advantages, a top-down model would make it fairly easy to impose restrictions
that make prices consistent with the equilibrium or no-arbitrage restrictions. Nevertheless, this
may come at the cost of marginal distributions that do not fit those observed in the market.
Only seldom (to say never) does this poor fit correspond to arbitrage opportunities, while more
often it is merely a symptom of model risk. On the opposite side, the bottom-up model may
ensure that marginal distributions are properly fitted, but it may be the case that this fit does
not abide by the consistency relationships that must exist among prices: the most well known
example is the no-arbitrage restriction requiring that prices of assets in speculative markets
follow martingale processes. The main goal of this book is actually to show how to impound
restrictions like these in a bottom-up framework.

1.4 COPULA FUNCTIONS

Copula functions are the main tool for a bottom-up approach. They are actually built on
purpose with the goal of pegging a multivariate structure to prescribed marginal distributions.
This problem was first addressed and solved by Abe Sklar in 1959. His theorem showed that
any joint distribution can be written as a function of marginal distributions:

F(xi, x2, ..., %) = C(Fi(x1), Fa(x2), ..., Fa(xn))

and that the class of functions C(.), denoted copula functions, may be used to extend the class
of multivariate distributions well beyond those known and usually applied. To quote the dual
approach above, the former result allows us to say that any top-down approach may be written
in the formalism of copula functions, while the latter states that copulas can be applied in
a bottom-up approach to generate infinitely many distributions. A question is whether this
multiplicity may be excessive for financial applications, and this whole book is devoted to that
question.

Often a more radical question is raised, whether there is any advantage at all to working
with copulas. More explicitly, one could ask what can be done with copulas that cannot be
done with other techniques. The answer is again the essence of the bottom-up philosophy. The
crucial point is that in the market, we are used to observing marginal distributions. All the
information that we can collect is about marginals: the time series of this and that price, and
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the implied distribution of the underlying asset of an option market for a given exercise date.
We can couple time series of prices or of distributions together and study their dependence,
but only seldom can we observe multivariate distributions. For this reason, it is mandatory
that any model be made consistent with the univariate distributions observed in the market:
this is nothing but an instance of that procedure pervasively used in the markets and called
calibration.

1.5 SPATIAL AND TEMPORAL DEPENDENCE

To summarize the arguments of the previous section, it is of the utmost importance that
multivariate models be consistent with univariate observed prices, but this consistency must
be subject to some rules and cannot be set without limits. These limits were not considered
in standard copula functions applications to finance problems. In these applications the term
multivariate was used with the meaning that several different risk factors at a given point in
time were responsible for the value of a position at that time. This concept is called spatial
dependence in statistics and is also known as cross-section dependence in econometrics. Copula
functions could be used in full flexibility to represent the consistency between the price of
a multivariate product at a given date and the prices of the constituent products observed
in the market. However, the term multivariate could be used with a different meaning, that
would make things less easy. It could in fact refer to the dependence structure of the value of
the same variable observed at different points in time: this is actually defined as a stochastic
process. In the language of statistics, the dependence among these variables would be called
temporal dependence. Curiously, in econometric applications copula functions have mainly
been intended in this sense. If copulas are used in the same sense in derivative pricing
problems, the flexibility of copulas immediately becomes a problem: for example, one would
like to impose restrictions on the dynamics to have Markov processes and martingales, and
only a proper specification of copulas could be selected to satisfy these requirements.

Even more restrictions would apply in an even more general setting, in which a multivariate
process would be considered as a collection of random variables representing the value of
each asset or risk factor at different points in time. In the standard practice of econometrics,
in which it is often assumed that relationships are linear, this would give rise to the models
called vector autoregression (VAR). Copula functions allow us to extend these models to a
general setting in which relationships are allowed to be non-linear and non-Gaussian, which
is the rule rather than the exception of portfolios of derivative products.

1.6 LONG-RANGE DEPENDENCE

These models that extend the traditional VAR time series with a specification in terms of
copula functions are called semi-parametric and the most well known example is given by the
so-called SCOMDY model (Semiparametric Copula-based Multivariate Dynamic). By taking
the comparison with linear models one step further, these models raise the question of the
behavior of the processes over long time horizons. We know from the theory of time series
that a univariate process y, modeled with the dynamics

W=t etarg1+...+0,6& ,+ Biyi—1+...+ BpYi—p,

where w, «i,...,a, and pBy,..., B, are constant parameters, €_; ~ N(0,0) and
Cov(e;_i, €_j) =0,1 # j is called an ARMA(p,q) model (Autoregressive Moving Average
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Process), that could be extended to a multiple set of processes called VARMA. In particular,
the MA part of the process is represented by the dependence of y; on the past g innovations
€;—; and the AR part is given by its dependence on the past p values of the process itself. If we
focus on the autoregressive part, we know that in cases in which the characteristic equation of
the process

2—piz—...— Bpz* =0

has solutions strictly inside the unit circle, the process is said to be stationary in mean. To
make the meaning clear, let us just focus on the simplest AR(1) process:

VW=w+€&+ B1yi—1-

It is easy to show that if B; < 1 by recursive substitution of y, ;_; into y,_;, we have
o0 o0 o
EG) =Y Bi+ > BiEle—i)=——r
i=0 i=0 1-8
and
o0 02
VAR(y) = ) E(Bje, )’ = ,
i=0 - ﬁl

where we have used the moments of the distribution of €, ;. Notice that if instead it is ; = 1,
the dynamics of y, is defined by

=+ €+ Yy

and neither the mean nor the variance of the unconditional distribution are defined. In this case
the process is called integrated (of order 1) or difference stationary, or we say that the process
contains a unit root. The idea is that the first difference of the process is stationary (in mean).
The distinguishing feature of these processes is that any shock affecting a variable remains
in its history forever, a property called persistence. As an extension, one can conceive that
several processes may be linear combinations of the same persistent shock y,, that is also called
the common stochastic trend of the processes. In this case we say that the set of processes
constitutes a co-integrated system. More formally, a set of processes is said to constitute a
co-integrated system if there exists at least one linear combination of the processes that is
stationary in mean.

In another stream of literature, another intermediate case has been analyzed, in which the
process is said to be fractionally integrated, so that the process is made stationary by taking
fractional differences: the long-run behavior of these processes is denoted long memory. In
Chapter 4 we shall give a formal definition of long memory (due to Granger, 2003) and we
will discuss the linkage with a copula-based stochastic process. As for the contribution of
copulas to these issues, notice that while most of the literature on unit roots and persistence vs
stationary models has developed under the maintained assumption of Gaussian innovations, the
use of copula functions extends the analysis to non-Gaussian models. Whether these models
can represent a new specification for the long-run behavior of time series remains an open
issue.



