
DISTRIBUTED SENSOR NETWORKS

S. Sitharama Iyengar and Richard R. Brooks

DISTRIBUTED SENSOR NETWORKS

Edited by S. Sitharama Iyengar

ACM Fellow, IEEE Fellow, AAAS Fellow
Roy Paul Daniels Professor of Computer Science and Chairman
Department of Computer Science
Louisiana State University

and

Richard R. Brooks

Associate Professor
Holcombe Department of Electrical and
Computer Engineering
Clemson University

CHAPMAN & HALL/CRC

A CRC Press Company
Boca Raton London New York Washington, D.C.

Library of Congress Cataloging-in-Publication Data

Catalog record is available from the Library of Congress

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher.

All rights reserved. Authorization to photocopy items for internal or personal use, or the personal or internal use of specific clients, may be granted by CRC Press, provided that \$1.50 per page photocopied is paid directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923 USA. The fee code for users of the Transactional Reporting Service is ISBN 1-58488-383-9/05/\$0.00+\$1.50. The fee is subject to change without notice. For organizations that have granted a photocopy license by the CCC, a separate system of payment has been arranged.

The consent of CRC Press does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press for such copying.

Direct all inquiries to CRC Press, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2005 by Chapman & Hall/CRC

No claim to original U.S. Government works
International Standard Book Number 1-58488-383-9
Printed in the United States of America 1 2 3 4 5 6 7 8 9 0
Printed on acid-free paper

DISTRIBUTED SENSOR NETWORKS

CHAPMAN & HALL/CRC COMPUTER and INFORMATION SCIENCE SERIES

Series Editor: Sartaj Sahni

PUBLISHED TITLES

HANDBOOK OF SCHEDULING: ALGORITHMS, MODELS, AND PERFORMANCE ANALYSIS Joseph Y-T. Leung

DISTRIBUTED SENSOR NETWORKS
S. Sitharama lyengar and Richard R. Brooks

FORTHCOMING TITLES

SPECULATIVE EXECUTION IN HIGH PERFORMANCE COMPUTER ARCHITECTURES David Kaeli and Pen-Chung Yew

THE PRACTICAL HANDBOOK OF INTERNET COMPUTING Munindar P. Singh

HANDBOOK OF DATA STRUCTURES AND APPLICATIONS Dinesh P. Mehta and Sartaj Sahni

Dedicated to Dr. S.S. Iyengar and Dr. S. Rai of LSU, whose ongoing mentoring has always been appreciated.

- R.R. Brooks

Dedicated to all my former/present Graduate and Undergraduate Students; to Prof. Kasturirangan, former ISRO Chairman, towards his dedication to Space Technology; Prof. Hartamanis and Prof. C.N.R. Rao for their inspiring research, and to Vice Provost Harold Silverman for providing an environment and mentoring me at different stages of my career.

- S.S. Iyengar

Preface

In many ways this book started 10 years ago, when the editors started their collaboration at Louisiana State University in Baton Rouge. At that time, sensor networks were a somewhat arcane topic. Since then, many new technologies have ripened, and prototype devices have emerged on the market. We were lucky enough to be able to continue our collaboration under the aegis of the DARPA IXO Sensor Information Technology Program, and the Emergent Surveillance Plexus Multidisciplinary University Research Initiative.

What was clear 10 years ago, and has become more obvious since, is that the only way to monitor the real world adequately is to use a network of devices. Many reasons for this will be given in this book. These reasons range from financial considerations to statistical inference constraints. Once you start using a network situated in the real world, the need for adaptation and self-configuration also become obvious.

What was probably not known 10 years ago was the breadth and depth of research needed to design these systems adequately. The book in front of you contains chapters from acknowledged leaders in sensor network design. The contributors work at leading research institutions and have expertise in a broad range of technical fields.

The field of sensor networks has matured greatly within the last few years. The editors are grateful to have participated in this process. We are especially pleased to have been able to interact with the research groups whose work is presented here. This growth has only been possible with the support from many government agencies, especially within the Department of Defense. Visionary program managers at DARPA, ONR, AFRL, and ARL have made a significant impact on these technologies.

It is the editors' sincere hope that the field continues to mature. We also hope that the cross-fertilization of ideas between technical fields that has enabled these advances, deepens.

Contributors

Mohiuddin Ahmed

Electrical Engineering Department University of California Los Angeles, California

N. Balakrishnan

Supercomputing Research Center Indian Institute of Science Bangalore, India

Steve Beck

BAE Systems, IDS Austin, Texas

Edo Biagioni

Department of Information and Computer Sciences University of Hawaii at Manoa Honolulu, Hawaii

N. K. Bose

Department of Electrical Engineering The Pennsylvania State University University Park, Pennsylvania

Cliff Bowman

Ember Corporation Boston, Massachusetts

K. W. Bridges

Department of Botany University of Hawaii at Manoa Honolulu, Hawaii

R. R. Brooks

Holcombe Department of Electrical and Computer Engineering Clemson University Clemson, South Carolina

David W. Carman

McAfee Research Rockville, Maryland

Krishnendu Chakrabarty

Department of Electrical and Computer Engineering Duke University Durham, North Carolina

G. Chen

Microsystems Design Laboratory The Pennsylvania State University University Park, Pennsylvania

J. C. Chen

Electrical Engineering
Department
University of California
Los Angeles, California

Eungchun Cho

Division of Mathematics and Sciences Kentucky State University Frankfort, Kentucky

A. Choudhary

Department of ECE Northwestern University Evanston, Illinois

Eiman Elnahrawy

Department of Computer Science Rutgers University Rutgers, New Jersey

Deborah Estrin

Information Sciences Institute
University of Southern California
Marina del Rey, California
and
Computer Science Department
University of California
Los Angeles, California

D. S. Friedlander

Applied Research Laboratory The Pennsylvania State University State College, Pennsylvania

N. Gautam

The Pennsylvania State University University Park, Pennsylvania

Johannes Gehrke

University of California Berkeley, California and Cornell University Ithaca, New York

Contributors

Ramesh Govindan

Information Sciences Institute University of Southern California Marina del Rey, California and Computer Science Department

University of Southern California Los Angeles, California

Lynne Grewe

Department of Mathematics and Computer Science California State University Hayward, California

C. Griffin

Applied Research Laboratory The Pennsylvania State University State College, Pennsylvania

Leonidas Guibas

Computer Science Department Stanford University Stanford, California

David L. Hall

The Pennsylvania State University University Park, Pennsylvania

John Heidemann

Information Sciences Institute University of Southern California Marina del Rey, California

Yu Hen Hu

Department of Electrical and Computer Engineering University of Wisconsin Madison, Wisconsin

M. I. Irwin

Microsystems Design Laboratory The Pennsylvania State University University Park, Pennsylvania

Computer Science and Engineering Applied Research Laboratory The Pennsylvania State University State College, Pennsylvania

S. S. Iyengar

Department of Computer Science Louisiana State University Baton Rouge, Louisiana

Vijay S. Iyer

Supercomputing Research Center Indian Institute of Science Bangalore, India

I. Kadayif

Microsystems Design Laboratory The Pennsylvania State University University Park, Pennsylvania

M. Kandemir

Microsystems Design Laboratory The Pennsylvania State University University Park, Pennsylvania and Computer Science and Engineering Applied Research Laboratory The Pennsylvania State University State College, Pennsylvania

B. Kang

Microsystems Design Laboratory The Pennsylvania State University University Park, Pennsylvania

Rajgopal Kannan

Department of Computer Science Louisiana State University Baton Rouge, Louisiana

M. Karakoy

Department of Computing Imperial College University of London London, UK

T. Keiser

Distributed Systems Department Applied Research Laboratory The Pennsylvania State University State College, Pennsylvania

J. D. Koch

Applied Research Laboratory The Pennsylvania State University State College, Pennsylvania

Richard J. Kozick

Department of Electrical Engineering **Bucknell University** Lewisburg, Pennsylvania

Bhaskar Krishnamachari

Department of Electrical Engineering University of Southern California Los Angeles, California

Teja Phani Kuruganti

Electrical and Computer **Engineering Department** University of Tennessee Knoxville, Tennessee

Jacob Lamb

Distributed Systems Department Applied Research Laboratory The Pennsylvania State University State College, Pennsylvania

L. Li

Microsystems Design Laboratory The Pennsylvania State University University Park, Pennsylvania

Alvin S. Lim

Department of Computer Science and Engineering Auburn University Auburn, Alabama

Iie Liu

Palo Alto Research Center (PARC) Palo Alto, California

Juan Liu

Palo Alto Research Center (PARC) Palo Alto, California

Samuel Madden

University of California Berkeley, California and Cornell University Ithaca, New York

Prakash Manghwani

BBN Technologies Cambridge, Massachusetts

Jeff Mazurek

BBN Technologies Cambridge, Massachusetts

Gail Mitchell

BBN Technologies Cambridge, Massachusetts

Badri Nath

Department of Computer Science Rutgers University Rutgers, New Jersey

Shashi Phoha

Applied Research Laboratory The Pennsylvania State University State College, Pennsylvania

Matthew Pirretti

Distributed Systems Department Applied Research Laboratory The Pennsylvania State University State College, Pennsylvania

Robert Poor

Ember Corporation Boston, Massachusetts

Gregory Pottie

Electrical Engineering Department University of California Los Angeles, California

Hairong Qi

Department of Electrical and Computer Engineering The University of Tennessee Knoxville, Tennessee

Suresh Rai

Department of Electrical and Computer Engineering Louisiana State University Baton Rouge, Louisiana

Parameswaran Ramanathan

Department of Electrical and Computer Engineering University of Wisconsin Madison, Wisconsin

Nageswara S. V. Rao

Computer Science and Mathematics Division Center for Engineering Science Advance Research Oak Ridge National Laboratory Oak Ridge, Tennessee

Asok Ray

Mechanical Engineering
Department
The Pennsylvania State University
University Park, Pennsylvania

James Reich

Palo Alto Research Center (PARC) Palo Alto, California

Brian M. Sadler

Army Research Laboratory Adelphi, Maryland

Prince Samar

School of Electrical and Computer Engineering Cornell University Ithaca, New York

H. Saputra

Computer Science and Engineering Applied Research Laboratory The Pennsylvania State University University Park, Pennsylvania

Shivakumar Sastry

Department of Electrical and Computer Engineering The University of Akron Akron, Ohio

Akbar M. Sayeed

Department of Electrical and Computer Engineering University of Wisconsin Madison, Wisconsin

Ben Shahshahani

Nuance Communications Menlo Park, California

David Shepherd

SA Inc.

Fabio Silva

Information Sciences Institute University of Southern California Marina del Rey, California

Vishnu Swaminathan

Department of Electrical and Computer Engineering Duke University Durham, North Carolina

David C. Swanson

Applied Research Laboratory The Pennsylvania State University State College, Pennsylvania

Ankit Tandon

Department of Computer Science Louisiana State University Baton Rouge, Louisiana

Ken Theriault

BBN Technologies Cambridge, Massachusetts

Vijay K. Vaishnavi

Department of Computer Information Systems Georgia State University Atlanta, Georgia

N. Vijaykrishnan

Microsystems Design Laboratory The Pennsylvania State University University Park, Pennsylvania and

Computer Science and Engineering Applied Research Laboratory The Pennsylvania State University State College, Pennsylvania

Kuang-Ching Wang

Department of Electrical and Computer Engineering University of Wisconsin Madison, Wisconsin

Xiaoling Wang

Department of Electrical and Computer Engineering The University of Tennessee Knoxville, Tennessee

Stephen B. Wicker

School of Electrical and Computer Engineering Cornell University Ithaca, New York

D. Keith Wilson

U.S. Army Cold Regions Research and Engineering Laboratory Hanover, New Hampshire

Qishi Wu

Computer Science and
Mathematics Division
Oak Ridge National Laboratory
Oak Ridge, Tennessee
and
Department of Computer Science
Louisiana State University
Baton Rouge, Louisiana

Yingyue Xu

Electrical and Computer Engineering Department University of Tennessee Knoxville, Tennessee

K. Yao

Electrical Engineering Department University of California Los Angeles, California

Feng Zhao

Palo Alto Research Center (PARC) Palo Alto, California

Mengxia Zhu

Department of Computer Science Louisiana State University Baton Rouge, Louisiana

Yi Zou

Department of Electrical and Computer Engineering Duke University Durham, North Carolina

Contents

SECTION I	: OVERVIEW	1
Chapter 1	An Overview S.S. Iyengar, Ankit Tandon, and R.R. Brooks	3
Chapter 2	Microsensor Applications David Shepherd and Sri Kumar	11
Chapter 3	A Taxonomy of Distributed Sensor Networks Shivakumar Sastry and S.S. Iyengar	29
Chapter 4	Contrast with Traditional Systems R.R. Brooks	45
SECTION I	I: DISTRIBUTED SENSING AND SIGNAL PROCESSING	49
Chapter 5	Digital Signal Processing Backgrounds Yu Hen Hu	53
Chapter 6	Image-Processing Background Lynne Grewe and Ben Shahshahani	71
Chapter 7	Object Detection and Classification Akbar M. Sayeed	97
Chapter 8	Parameter Estimation David S. Friedlander	115
Chapter 9	Target Tracking with Self-Organizing Distributed Sensors R.R. Brooks, C. Griffin, David S. Friedlander, and J.D. Koch	135
Chapter 10	Collaborative Signal and Information Processing: An Information-Directed Approach Feng Zhao, Jie Liu, Juan Liu, Leonidas Guibas, and James Reich	185
Chapter 11	Environmental Effects David C. Swanson	201
Chapter 12	Detecting and Counteracting Atmospheric Effects Lynne L. Grewe	213

xiv

Chapter 13	Signal Processing and Propagation for Aeroacoustic Sensor Networks Richard J. Kozick, Brian M. Sadler, and D. Keith Wilson	225
Chapter 14	Distributed Multi-Target Detection in Sensor Networks Xiaoling Wang, Hairong Qi, and Steve Beck	271
SECTION II	I: INFORMATION FUSION	287
Chapter 15	Foundations of Data Fusion for Automation S.S. Iyengar, S. Sastry, and N. Balakrishnan	291
Chapter 16	Measurement-Based Statistical Fusion Methods For Distributed Sensor Networks Nageswara S.V. Rao	301
Chapter 17	Soft Computing Techniques R.R. Brooks	321
Chapter 18	Estimation and Kalman Filters David L. Hall	335
Chapter 19	Data Registration R.R. Brooks, Jacob Lamb, and Lynne Grewe	361
Chapter 20	Signal Calibration, Estimation for Real-Time Monitoring and Control Asok Ray and Shashi Phoha	391
Chapter 21	Semantic Information Extraction David S. Friedlander	409
Chapter 22	Fusion in the Context of Information Theory Mohiuddin Ahmed and Gregory Pottie	419
Chapter 23	Multispectral Sensing N.K. Bose	437
SECTION I	V: SENSOR DEPLOYMENT AND NETWORKING	449
Chapter 24	Coverage-Oriented Sensor Deployment Yi Zou and Krishnendu Chakrabarty	453
Chapter 25	Deployment of Sensors: An Overview S.S. Iyengar, Ankit Tandon, Qishi Wu, Eungchun Cho, Nageswara S.V. Rao, and Vijay K. Vaishnavi	483
Chapter 26	Genetic Algorithm for Mobile Agent Routing in Distributed Sensor Networks Qishi Wu, S.S. Iyengar, and Nageswara S.V. Rao	505
Chapter 27	Computer Network — Basic Principles Suresh Rai	527
Chapter 28	Location-Centric Networking in Distributed Sensor Networks Kuang-Ching Wang and Parameswaran Ramanathan	555
Chapter 29	Directed Diffusion Fabio Silva, John Heidemann, Ramesh Govindan, and Deborah Estrin	573

Chapter 30	Data Security Perspectives David W. Carman	597
Chapter 31	Quality of Service Metrics N. Gautam	613
Chapter 32	Network Daemons for Distributed Sensor Networks Nageswara S.V. Rao and Qishi Wu	629
SECTION V	POWER MANAGEMENT	651
Chapter 33	Designing Energy-Aware Sensor Systems N. Vijaykrishnan, M.J. Irwin, M. Kandemir, L. Li, G. Chen, and B. Kang	653
Chapter 34	Operating System Power Management Vishnu Swaminathan and Krishnendu Chakrabarty	667
Chapter 35	An Energy-Aware Approach for Sensor Data Communication H. Saputra, N. Vijaykrishnan, M. Kandemir, R.R. Brooks, and M.J. Irwin	697
Chapter 36	Compiler-Directed Communication Energy Optimizations for Microsensor Networks I. Kadayif, M. Kandemir, A. Choudhary, M. Karakoy,	711
Chapter 37	N. Vijaykrishnan, and M.J. Irwin Sensor-Centric Routing in Wireless Sensor Networks Rajgopal Kannan and S.S. Iyengar	735
SECTION V		749
Chapter 38	Query Processing in Sensor Networks Samuel Madden and Johannes Gehrke	751
Chapter 39	Autonomous Software Reconfiguration R.R. Brooks	773
Chapter 40	Mobile Code Support R.R. Brooks and T. Keiser	787
Chapter 41	The Mobile-Agent Framework for Collaborative Processing in Sensor Networks Hairong Qi, Yingyue Xu, and Teja Phani Kuruganti	801
Chapter 42	Distributed Services Alvin S. Lim	819
Chapter 43	Adaptive Active Querying Bhaskar Krishnamachari	835
SECTION V	II: SELF-CONFIGURATION	845
Chapter 44	Need for Self-Configuration R.R. Brooks	847
Chapter 45	Emergence R.R. Brooks	855
Chapter 46	Biological Primitives M. Pirretti, R.R. Brooks, J. Lamb, and M. Zhu	863

Chapter 47	Physics and Chemistry Mengxia Zhu, Richard Brooks, Matthew Pirretti, and S.S. Iyengar	879
Chapter 48	Collective Intelligence for Power-Aware Routing in Mobile Ad Hoc Sensor Networks Vijay S. Iyer, S.S. Iyengar, and N. Balakrishnan	895
Chapter 49	Random Networks and Percolation Theory R.R. Brooks	907
Chapter 50	On the Behavior of Communication Links in a Multi-Hop Mobile Environment Prince Samar and Stephen B. Wicker	947
SECTION VIII: SYSTEM CONTROL		975
Chapter 51	Example Distributed Sensor Network Control Hierarchy Mengxia Zhu, S.S. Iyengar, Jacob Lamb, R.R. Brooks, and Matthew Pirretti	977
SECTION IX	K: ENGINEERING EXAMPLES	1009
Chapter 52	SenSoft: Development of a Collaborative Sensor Network Gail Mitchell, Jeff Mazurek, Ken Theriault, and Prakash Manghwani	1011
Chapter 53	Statistical Approaches to Cleaning Sensor Data Eiman Elnahrawy and Badri Nath	1023
Chapter 54	Plant Monitoring with Special Reference to Endangered Species K.W. Bridges and Edo Biagioni	1039
Chapter 55	Designing Distributed Sensor Applications for Wireless Mesh Networks Robert Poor and Cliff Bowman	1049
SECTION X	: BEAMFORMING	1067
Chapter 56	Beamforming J.C. Chen and K. Yao	1069
INDEX		1107

Overview

1.	An Overview S.S. Iyengar, Ankit Tandon and R.R. Brooks
	Introduction • Example Applications • Computing Issues in Sensor
	Networks • Requirements of Distributed Sensor Networks •
	Communications in Distributed Sensor Networks •
	Mobile-Agent Paradigm • Technology Needed •
	Contrast with Traditional Computing Systems
2.	Microsensor Applications David Shepherd
3.	A Taxonomy of Distributed Sensor Networks
	Shivakumar Sastry and S.S. Iyengar29
	Introduction • Benefits and Limitations of DSNs • General Technology
	Trends Affecting DSNs • Taxonomy of DSN
	Architectures • Conclusions • Acknowledgments
4.	Contrast with Traditional Systems R.R. Brooks
	Problem Statement - Acknowledgments and Disclaimer

T his section provides a brief overview of sensor networks. It introduces the topics by discussing what they are, their applications, and how they are differ from traditional systems.

Iyengar *et al.* provide a definition of distributed sensor networks (DSNs). They introduce many applications that will be dealt with in more detail later. A discussion is also provided of the technical challenges these systems present.

Kumar provides an overview of sensor networks from the military perspective. Of particular interest is a summary of military applications starting in the 1960s. This chapter then proceeds to recent research advances. Many of these advances come from research groups presented in later sections of this book.

Sastry and Iyengar provide a taxonomy of DSNs. The taxonomy should help readers in structuring their view of the field. It also is built on laws describing the evolution of technology. These laws can help readers anticipate the future developments that are likely to appear in this domain.

1

Brooks describes briefly how DSNs differ from traditional systems. The global system is composed of distributed elements that are failure prone and have a limited lifetime. Creating a reliable system from these components requires a new type of flexible system design.

The purpose of this section is to provide a brief overview of DSNs. The chapters presented concentrate on the applications of this technology and why the new technologies presented in this book are necessary.