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PREFACE

The aim of this book is to give a sound, systematic, unmistakably
clear and reasonably complete treatment of the mathematical and
mechanical aspects of the gyroscope and its more important
applications. Since the book is concerned with fundamental
principles, constructional details are not entered into except inso-
far as they may aid in clarifying the principles. Friction has been
left out of consideration in the motion of the gyroscope itself,
because the construction, mounting and casing of modern gyro-
scopes are such as to keep friction of all kinds as low as possible.
Unavoidable friction is taken care of by the driving motor.

Because I think the mathematical theory of the gyroscope and
its applications are best treated with the aid of vectors, I have used
vector methods throughout the book. And since a knowledge of
vector analysis is not assumed on the part of the reader, the first
chapter is devoted to the exposition of the amount of vector
analysis needed in the subsequent chapters.

The right-handed system of coordinate axes is used throughout
the book, because of its advantages for this work.

A complete and exact mathematical treatment of gyroscopic
motion becomes intractable almost at the beginning. Approxima-
tions of minor importance must be made in order to obtain
tractable and solvable equations. When making simplifying
approximations, I have pointed out their nature and in some
cases have shown by numerical examples that the errors thus
introduced were of no consequence.

In the preparation of this book I have consulted the works of
many previous writers, the most important of which are listed in
the Bibliography at the end of the book.

It is a pleasure to record my thanks and obligations to the
Sperry Gyroscope Company, Great Neck, New York, for their
unstinted cooperation in furnishing information and photographs
relating to various gyroscopic instruments and applications. I also
wish to record my thanks to the following other manufacturers for
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furnishing information and photographs: The Arma Corporation,
Garden City, New York; The Minneapolis-Honeywell Regulator
Company, Minneapolis, Minnesota ; and The National Engineering
Company, Chicago, Illinois. Finally, I wish to thank Mr. Donald
Trumpy, of the yacht-building firm of John Trumpy and Sons,
Annapolis, Maryland, for gyroscopic data concerning a 29,000-
mile cruise which he took on a yacht equipped with a Sperry ship
stabilizer.

J. B. SCARBOROUGH

Awugust, 1957
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CHAPTER I
Some Necessary Vector Analysis

The theory, behavior and applications of the gyroscope can be
explained best by means of vectors. We therefore devote the present
chapter to the exposition of the needed amount of vector analysis.

1. Scalar and vector quantities

The quantities which occur in physics are of two kinds: those
which have magnitude only and those which have both magnitude
and direction. The former are called scalar quantities and the latter
are called vector quantities. Examplesof scalar quantitiesaredensity,
temperature and electric potential. Familiar examples of vector
quantities are force, velocity and acceleration. Vectors may also be
used to denote position, in which case they are called position vectors.

Vector quantities are represented geometrically by segments of
straight lines, the line segments carrying arrow heads at one end to
indicate the sense of the vector. The magnitude and direction of the
directed quantity are indicated by the length and orientation of the
vector. .

In Fig. 1 is shown a vector 4B, which is also denoted by the

single letter r. The projections of AB on the coordinate axes are the
vectors X, Y and Z as shown.

A vector is designated in print by a single boldface letter, as r in
Fig. 1; or by the letters designating its end-points, with an arrow

written over the two letters, as ABin Fig. 1.
Vectors may be multiplied or divided at will by any numbers or

scalars, the results always being vectors. Thus 3r, A_f?/l, etc., are
vectors having the same direction and sense as the original vectors.
However, the multiplication or division of a vector by a negative
number always reverses the sense of the vector.
Two vectors are equal when they have the same magnitude,
direction and sense.
3 1-2



4 THE GYROSCOPE

Fig. 1

2. Geometric addition and subtraction of vectors

To find the geometric sum of two vectors, place the initial point
of the second vector at the terminal point of the first and then draw
a line from the initial point of the first vector to the terminal point
of the second. The vector thus drawn is the geometric sum of the
given vectors. In Fig. 2, for example, AC is the geometric or vector

sum of AB and BC. Such addition is denoted by either of the
equations AB+BO=40, (21)
P+Q=R. (2-2)

The geometric difference between two vectors is found by
changing the sign of the subtrahend vector and then adding it to the

other vector. Thus P-Q=P+(-Q). (2-3)

Reference to Fig. 2 will show that vectors are added and sub-
tracted by the parallelogram law, the sum being given by one



SOME NECESSARY VECTOR ANALYSIS 5

diagonal of the parallelogram and the difference by the other
diagonal.

The geometric sum of any number of vectors is found by the same
procedure as in the case of two vectors; that is, the initial point of
the second vector is placed at the terminal point of the first, the

P

Fig. 2

initial point of the third is placed at the terminal point of the
second, etc. The geometric sum of all the vectors is the vector
drawn from the initial point of the first to the terminal point of the
last, as indicated in Fig. 3.

3. Analytical addition of vectors

The sum or resultant of several vectors is found analytically by
first resolving the vectors into rectangular components along
coordinate axes, finding the algebraic sums of these components



