WINDCREST /McGRAX-HILL

The Clipper
Interface Handbook

P Master Clipper through 5.01

P Develop interfaces to C, assembly, DOS
& PC-MOS

P Program customized user menus &
mouse support

John Mueller

The
Clipper® Interface
Handbook

John M ‘

Windcrest®McGraw-Hill

FIRST EDITION
FIRST PRINTING

© 1992 by Windcrest Books, an imprint of TAB Books.
TAB Books is a division of McGraw-Hill, Inc.
The name “'Windcrest is a registered trademark of TAB Books.

Printed in the United States of America. All rights reserved. The publisher takes no
responsibility for the use of any of the materials or methods described in this baok,
nor for the products thereof.

Library of Congress Cataloging-in-Publication Data

Mueller, John, 1958 —
The Clipper interface handbook / by John Muelier.
p. ¢m.
Includes index.
ISBN 0-8306-3532-7 (pbk.)
1. Compilers (Computer programs) 2. Chipper {Computer program)
1. Title.
QA76.76.C65M83 1991
005.75'65—dc20 91-34294
CIP

TAB Books offers software for sale. For information and a catalog, please contact
TAB Software Department, Blue Ridge Summit, PA 17294-0850.

Acquisitions Editor: Brad Schepp

Book Editor: Kellie Hagan

Director of Production: Katherine G. Brown

Series Design: Jaclyn J. Boone WP1
Cover: Sandra Blair Design, and Brent Blair Photography, Harrisburg, PA

Acknowledgments

My friend Wallace Wang helped get me started writing and encourages me
to do so with a fervor unmatched by anyone. His gift to me has always been
laughter in the face of overwhelming odds. Everyone should have someone
like this to cheer them on.

A good technical editor is hard to find, at least that is what I've heard.
Dian Schaffhauser has been an example to me of what an editor should be.
Never harsh, and always willing to talk, Dian led me on the chase for per-
fection. She encouraged me to find that elusive thing called truth.

I want to thank David Frier for technically reviewing this book. I can’t
help but feel his contribution has made this book better than I could have
alone.

I also want to acknowledge the contributions of those people who
made parts of this book possible. Tanya VanDam of Microsoft Corporation
graciously helped me obtain the best information possible about Macro
Assembler and the C compiler. Frances Jackson and Craig Ogg of Nan-
tucket Corporation assisted me in every way possible to obtain and under-
stand the Clipper compiler. Artist Graphics provided the Artist TI12,
which I used to document the TMS34010 processor. And finally, I want to
thank all those technicians, developers, and consultants who cheered me
on, provided criticism and ideas, and generally helped me shape this
book. :

Introduction

This book conveys four main ideas that anyone using Clipper needs to con-
sider. First, “What does Clipper provide in the way of programming
tools?’’ The Introduction looks at what you should expect from Clipper as
a compiler. Second, ‘“How does Clipper interface with Assembler and C?"*
This is the basis for building your own tools to enhance the Clipper pro-
gramming environment. Third, “How can you enhance Clipper-provided
programming tools?"’ Once you understand the application program inter-
face (API), you can begin to modify your working environment. Doing so
will increase your productivity while decreasing the amount of work
required to create a program. Fourth, ‘‘How can I create entirely new pro-
gramming tools?’’ Enhancements are often not enough to give a developer
an edge aver the competition. Programming tools are the means by which
you cannot only reduce programming time, but differentiate your product
from someone else’s. This book assumes that you are an intermediate to
advanced programmer, so actual implementation of an idea takes prece-
dence over the theory behind the idea.

What is in this book?

The Clipper Interface Handbook begins with a brief discussion of all the
Clipper commands and functions already available. This is important
because some readers might not know that a particular capability already
exists or that there are problems with a particular capability. The main
reason for this lack of user knowledge is the relatively poor documentation
supplied by Nantucket with Clipper. The newest release does not even sup-
ply hardcopy documentation. As a result, there are new features that
many people are not familiar with.

xviii

‘Part 1: Clipper introduction This introductory section contains the first
four chapters. Chapters 1 and 2 discuss Clipper commands and functions,
and each description highlights any anomalies you should expect to see
when using the command or function. It also tells you when the command
or function first appeared in Clipper. This will help you determine when to
use an advanced feature and when to maintain compatibility with older
versions of Clipper. Chapter 3 discusses the preprocessor and how to use
code blocks. Both of these features are new to version 5.0 of Clipper.
Understanding what they can do for you is paramount to tool building.
Chapter 4 is a detailed discussion of the object-oriented features in Clip-
per. In many cases, these new object-oriented features allow you to rede-
fine your programming environment without resorting to C or assembler
add-on functions.

Part 2: Interfacing Clipper The second section of the book discusses the
Clipper interface to other programming languages. It is divided into two
chapters, one for Assembly Language and another for C. Each chapter dis-
cusses Nantucket-supplied interface aids, user additions to these inter-
faces, and new interface aids that you can create. Many of the differences
between C and assembler add-ons are discussed as well, for example,
using assembler or C to create an add-on.

Part 3: Clipper add-ons The third section of the book discusses Clipper
add-ons, in other words, using the supplied functions as a base and adding
to them. This section is also split into two chapters. The first chapter cov-
ers standard functions and the second covers network-related functions.
Enhancing existing commands and functions is often easier than pro-
gramming them from the beginning. This section will help you determine
when you can use this relatively simple technique in place of a full-blown
C or assembler add-on.

Part 4: New functions The fourth and final section looks at creating
entirely new functions. Once you determine that Clipper does not supply a
required function and that an existing function cannot be modified, you
can use this book to create entirely new functions. This section contains
four chapters, and is therefore a major portion of the book. Chapter 9 dis-
cusses Clipper interfaces to other programs. This is intended to illustrate
how to create a data (versus programming language) interface. For exam-
ple, you could write a program where the client wants a program to call a
cash register, download information, convert it to dBASE III format, and
then analyze the receipt and employee information. Without the proper
interface to the cash register, this program couldn’t work. Chapter 10 dis-
cusses how to create libraries of routines. This is important in a group pro-
gramming environment. Using a library of routines is far more convenient
than using individual object modules. Chapters 11 and 12 discuss low-
level access to DOS routines not exploited by Clipper, specifically mouse
routines and graphic displays.

Introduction XixX

Appendices The seven appendices contain reference material that you
might need to create a program. This includes information about Clipper
responses to the keyboard, a summary of commands for both Assembly
Language and C, and two appendices describing how to directly access
the computer’s peripheral chips.

Why is this book unique?

Most Clipper programming books leave you stranded with untested code
fragments that may or may not work when used. This book provides com-
plete programs as examples. Therefore, you not only see how to include a
feature as part of a program, but you know that the code works as well.
Also, no other book attempts to cover low-level programming techniques
in the detail that this book does. Even though some books tell you that you
can access hardware, they fail to show you how. The Clipper Interface
Handbook provides you with complete coverage of how to use Clipper to
your best advantage.

Programming conventions

There are several programming conventions used throughout this book.
An understanding of these conventions will help you receive more infor-
mation from the examples in this book and from the Nantucket manuals
in general. In addition, these same concepts are equally applicable to Clip-
per. C, and assembly code. Many of these conventions have been discussed
by developers at conferences and on bulletin board systems (BBSs).

The first stage of development for this system was started by Charles
Simonyi of Microsoft Corporation. He called his system Hungarian nota-
tion. There are many places that you can obtain a copy of his work, includ-
ing many BBSs. His work was further enhanced by developers in close
association with the Nantucket Corporation. A final copy of the enhance-
ment to the original Hungarian notation was published by Robert A.
Difalco of Fresh Technologies. You can find his work on many BBSs as
well, including the Nantucket-supported forum on CompuServe.

Much of the information in this section can be found in one of the two
previously mentioned documents in one form or another. The purpose in
presenting them here is to make you aware of the exact nature of the con-
ventions and show you how to use them to your best advantage. There are
four reasons why you should use these naming conventions in your pro-
grams:

Mnemonic value This allows the programmer to remember the name of a
variable more easily, an important consideration for team projects.

Suggestive value You might not be the only person modifying your code.
If you're working on a team project, others in the team will most likely look

XX Introduction

at the code you've written. Using these conventions will help others under-
stand your work.

Consistency A programmer’s ability is often evaluated on the basis of not
only how efficiently he programs or how well the programs he creates
function, but also how easily another programmer can read his code.
Using these conventions will help you maintain uniform code from one
project to another. Other programmers will be able to anticipate the value
or function of a section of code simply by the conventions you use.

Speed of decision In the business world, the speed at which you can cre-
ate and modify code will often determine how successful a particular ven-
ture will be. Using consistent code will reduce the time you spend trying to
decide what someone meant when creating a variable or function. This
reduction in decision time will increase the amount of time you have avail-
able for productive work.

Procedure and function naming conventions

This book uses the same conventions for naming both functions and pro-
cedures. To make the text easier to understand, I will refer to both proce-
dures and functions as functions. The following rules will help you
understand the conventions used to name functions throughout the book.

¢ Some languages allow you to type a function by the value it returns.
This is not the case with Clipper, however, because it is not a
strongly typed language. Because you can’t rely on a specific return
value from a function, you can’t use an indicator to show its return
type. For example, a variable returning a numeric value would
begin with a lowercase n to show its type. Therefore, all Clipper
functions begin with an uppercase character for an external third-
party function, a lowercase letter for a native external function, or
an underscore for an internal function.

¢ You can further differentiate between native and third-party func-
tions because native functions use all lowercase letters. A third-
party function might use a combination of upper- and lowercase,
providing the first character is always uppercase.

¢ In many cases, a function converts one value to another value. To
differentiate these functions from functions that perform a more
generalized task, you type the input value, a 2, and then the output
value. For example, if you wanted to create a function for converting
a value from the frequency domain to the time domain, you could
name the function Freq2Time.

¢ Even though you can’t type a function to return a specific value,
there are instances where the purpose of a function is clearly out-
lined and you know that it returns a specific value. In those cases
you can use a standard qualifier to help define the function. A list-

Introduction XXxi

ing of these standard qualifiers appears in the section on variable
naming conventions.

¢ Always define a function using only one or two standard qualifiers.
Some programmers use so many qualifiers to define a function
name that they actually make their code less rather than more
descriptive. The purpose of a function can become difficult to deter-
mine if you use too many qualifiers.

¢ It is always convenient to be able to quickly find where a function is
defined within the source code. To help in this, always capitalize the
keywords PROCEDURE, FUNCTION, and RETURN. This will make
the task of finding function definitions easier.

* To help differentiate native standard functions from those using the
object-oriented programming (OOP) exported method, use a combi-
nation of upper- and lowercase letters for the OOP function, and
always make the first letter of the function lowercase. For example,
oBrowse:goBottom() is an exported instance variable of the
TBrowse class.

Using these seven rules will make it much easier to determine the purpose
and origin of the functions you use within a program. The following exam-
ples illustrate the seven rules.

SomeFunc() /{ third-party function

cls /! native external function
—retni() /! native internal function
Num2Char() /f third-party conversion function
Bin2W() // native conversion function
SetColor() {[qualified function

FUNCTION SetColor() /! keyword capitalization
oGet:KillFocus // OOP function

DBF and field-related naming conventions

One of the things that differentiates database programming from other
types of programming is the use of databases and indexes. These file
structures rely on the contents of fields within the structure. Because
these are of such importance in a Clipper program, you need to differenti-
ate between a database, field, index, and standard variable. Often, a data-
base is assigned an alias when the user opens it. For the purpose of this
discussion, aliases will have the same naming conventions as database
files.

One way to make a piece of code stand out from the code around it is
by using capitalization. To differentiate the three parts of a database from
the rest of the code, the database filenames, index filenames, and field
names will always be expressed in capital letters.

Just like other variables, it makes sense to give database variables log-

xxii Introduction

ical names. Whenever possible, use the same standard qualifiers for data-
base filenames, index filenames, and field names as you use for standard
variables.

Even with the precaution of using all capital letters to reference a data-
base filename and field name, it might still be possible for someone to con-
fuse the two variables within your code. Because of this and also the
possibility of confusing the compiler, always reference a field name with
an alias. This will ensure that anyone reading your code will instantly rec-
ognize a field. In addition, you’ll ensure that the compiler knows that
you're referring to a field name rather than a variable. An example of this
approach is SOMEDATA - FIELD NAME, where SOMEDATA is an alias for
a database file, and FIELD NAME is the name of a field.

It’s always best to show an association where one exists. For this rea-
son, when a variable is used to store the contents of a field, it’s best to give
it the same name as the field, with the addition of a standard prefix. For
example, if you have a field named FIELDNAME, and that field stores
character values, then the variable name would be cFieldName. A list of
variable prefixes is provided in the variable naming convention section.

There is also the question of exactly how to name a database file. One
strategy is to build a database filename out of various parts. For example,
if you had a database that was used for accounting, you might start each
file specifically for that purpose with the prefix ACT. That way, you could
easily separate the accounting files from other files in the directory.
Another typical database is one that contains customer addresses and
other information. You could give these files a prefix of CUST.

Just as a variable can be associated with a specific field in a database,
index files are always associated with a specific database file. Because you
want to be able to see a relationship where it occurs, you should always
use the same name for an index file as you do for the database file. How-
ever, then you have to handle databases with multiple indexes. In these
cases, it's better to give the database file a seven-character name and
sequentially number the index files. For example, the first index file of a
database used to store customer address information might be CUS-
TADRI1.NTX. This approach is much better than trying to indicate the
indexing scheme as part of the index filename.

Variable naming conventions

Variables are one of the hardest parts of a program to understand. Unlike
functions and procedures, variables are not defined in the manual any-
where and few programs have published data dictionaries. As a result,
there is often a lot of confusion about the exact meaning of a variable.
There are several ways to understand the variables you use within a pro-
gram.

Always prefix a variable with a single lowercase letter, indicating its
type. In most cases this is the first letter of the variable type, so it’s easy to

Introduction xxiii

remember what letter to use. The following examples show the most com-
mon prefixes. Note that these prefixes are also the values returned by the
ValType() function described in chapter 2.

Prefix Variable type

Array

Code block

Character

Date

Handle

Logical

Numeric

Object

Variable type (macro or changing value)

woR—Dpaooge

Some variables represent the state of a database, or store the state of
another variable. You can identify these variables using a three-character
state qualifier. The following examples represent the most common state
qualifiers.

Qualifier State

New a new state
Sav a saved state
Tem a temporary state

A standard qualifier can help someone see the purpose of a variable
almost instantly. For example, using the Clr qualifier tells you that this
variable is used in some way with color. You can even combine the qualifi-
ers to amplify their effect and describe how the variable is used. For exam-
ple, cCirCrs is a character variable that determines the color of the cursor.
Using from one to three of these qualifiers is usually sufficient to describe
the purpose of a variable. The following standard qualifiers are examples
of the more commuon types.

Qualifier Type Qualifier Type

Ar Array Msg Message
Attr Attribute Name Name

B Bottom Ntx Index File
Clr Color R Right

Col Column Rec Record number
Crs Cursor Ret Return value
Dbf Database file Scr Screen

F First Str String

File File T Top

Fld Field X Row

L Last/left Y Column

Xxiv Introduction

Use the following specifications to refer to optional pointer references:

Qualifier Reference

1,2,3 State pointer references, as in cSavClrl, cSavCIr2, etc.
Max Strict upper limit, as in nFldMax, maximum number
of fields
Min Strict lower limit, as in nRecMin, minimum number of
records
Other conventions

Besides programming conventions, there are some book conventions I use
to illustrate examples more clearly. These conventions are not part of the
programs, but are used to illustrate the use of a command, function, or
procedure. These book conventions are as follows:

<EXP> A standard expression of no particular type. This usually refers
to a command or function that accepts multiple types as input.

<aEXP> An array is required as input. The command or function
description will tell you if it is a single or multidimensional array. It will
also tell you the variable type required as input.

<bEXP> A code block is required as input. The command or function
description will provide the parameters that the code block must meet.
The example section of the description will show how to format the code
block.

<cEXP> A character expression is required as input.
<dEXP> A date expression is required as input.

<hEXP> A file handle is required as input. The description will tell you
how the handle is obtained and for what purpose it is used.

<IEXP> A logical expression is required as input. This is always the
Boolean operators .T. or .F., or some expression that equates to a Boolean.

<nEXP> A numeric expression is required as input.
<0EXP> An object is required as input.

<xEXP > Some type of variable expression is required as input. The
command or procedure description will tell you what types of input you
can provide.

[<EXP>] The requested expression is optional. This usually means that
the command or function will perform the specified task correctly without
this input. The optional expression merely enhances program operation
in some way.

Introduction xxv

EXP LIST A list of expressions separated by commas or combined with
math operators is required. A single expression constitutes a subset of the
list in most cases.

KeyWord Type this word exactly as written in the heading of the descrip-
tion, using the proper capitalization (as described in the previous section)
within your program.

<SCOPE> This usually appears in conjunction with a database or array
command or function. It indicates that you can specify the range of
records on which the command or function operates.

<FIELD> You must supply a field expression as input. This usually
means that the command or function works directly with the database
instead of variables.

<CONDITION> An expression that equates to a Boolean output. It is used
in conjunction with the scope clause of a command or function to further
define the range of records on which the command or function operates.

The book uses other conventions in special cases. In these instances, the
exact meaning of the convention is stated in the description of the com-
mand or function.

XXVi Introduction

1
Clipper commandss

This chapter contains an alphabetical listing of all Clipper commands. In
many cases, the use and execution of these commands vary widely from
other xbase (generic database) dialects. The preprocessor found in ver-
sions 5.0 and above of Clipper will allow you to modify this behavior. To
find out how to enhance the capabilities provided by these versions, read
chapter 3.

Each command description in this chapter also provides you with the
version in which the command first appeared. If the command appeared
in more than one version (Summer 87, 5.0, or 5.01), then the version infor-
mation will tell you how the command changed. In many cases it will
become apparent that version 5.0 enhanced the language, while 5.01
increased compatibility. Some of the version-specific information provides
warnings about using certain commands under specific conditions. These
warnings include unimplemented features between versions, enhance-
ments, anomalies, and fixes that change the behavior of the command.

This chapter uses the conventions explained in the introduction to the
book. Reading the introduction will increase your understanding of the
examples provided as part of each description.

Each command entry contains the command line interface for the
command and a description of how to use it. Notice how each version
changes the behavior of some commands. These differences determine
how you should use the command while programming. In this chapter, I
assume that you're using the default Clipper configuration, libraries, and
other support files.

?/7? <EXP LIST>

Summer 87, 5.0, 5.01

A change in versions 5.0 and 5.01 is that the preprocessor actually sub-
stitutes the QOut() function for the ? command, and the QQOut() func-
tion for the ?? command. This command is provided Jor compatibility
reasons only.

This command displays the results of the expression list. It does not
provide any method of formatting the output. The output appears at the
current cursor position unless the expression list contains the control
codes necessary to change the cursor position. In most cases, use the @
Say/Get command in place of this command for standard output. Use the
QOut() or @QOut() function within code blocks. Version 5.01 provides the
Alert() function for error messages.

The ? command displays a single line of text or numbers. It always
ends the text with a carriage return and line feed combination. The ??
places the text or numbers on the current line. EXAMPLE:

7 "Some Text"

@ <nEXP1>, <nEXP2>, <nEXP3>, <nEXP4>

Box <cEXP1> [Color <cEXP2>]

Summer 87, 5.0, 5.01

5.01 provides a new function, DispBox(), in place of this command. The
DispBox() function provides greater flexibility and is easler to use than
the @...Box command. In addition, both 5.0 and 5.01 allow you to use a
numeric argument in place of cEXP1. A value of 1 draws a single box,
while 2 draws a double box. 5.01 also adds cEXP2, which allows you to
change the color of the box.

Use this command to draw a box around a display area. nEXP1 con-
tains the top row offset. nEXP2 contains the left column offset, nEXP3
contains the bottom row offset, and nEXP4 contains the right column off-
set. cEXP1 contains a string of nine characters. The first eight characters
are the line-drawing characters used for corners and sides of the box. Clip-
per begins a box at the upper left corner of the defined area. The ninth
character is the box fill character. cEXP2 sets the border color of the box.
It uses the same colors described for the SetColor(} function. The optional
Color argument provides the means to set the colors for that specific say or
get. It uses the same color setup described in chapter 2 for the SetColor()
function. EXAMPLE:

cFILL = chr(218) + chr(196) + chr(191) + chr(179) + chr(217) + 3
chr(196) + chr(192) + chr(179) + chr(176)

@ o1, 01, 23, 79 box cFILL

2 Clipper commands

@ 01, 01, 23, 79 box cFILL

@ <nEXP1>, <nEXP2> Clear [To <nEXP3>, <nEXP4>]

Summer 87, 5.0, 5.01

5.01 uses a combination of the Scroll() and SetPos() functions to accom-
plish this command. Depending on the effect you want to create, it
might be more efficient to use a combination of these two commands
rather than using @...Clear.

Use this command to clear a rectangular area of a display. nEXP1 con-
tains the starting row and nEXP2 contains the starting column. If you
don’t specify the optional To argument, Clipper clears a single line starting
at nEXP2 and going to column 79. nEXP3 specifies the ending row and
nEXP4 specifies the ending column. This command removes windows of
information from the display. EXAMPLE:

* Clear the upper left corner of the display.
@ 01, 01 clear to 15, 24

@ 01, 01 clear to 15, 24

@ <nEXP1>, <nEXP2> Prompt <cEXP1> [Message <cEXP2>]
Summer 87, 5.0, 5.01

Starting with verslon 5.0, the number of prompts has been increased
Jrom 32 to 4,096.

Create menus using this command in conjunction with the MENU TO
command. nEXP1 contains the prompt row, nEXP2 contains the prompt
column, and cEXP1 contains the menu prompt. Specify an optional help
message using the Message argument. If you specify this argument, Clip-
per displays the cEXP2 associated with the currently highlighted prompt.
Set the message location using the Set Message To command. EXAMPLE:

@ 01, 20 prompt "Display Database”
@ 02, 20 prompt "Print Database”

@ 03, 20 prompt "Exit Program"
menu to SELECTION

@ <nEXP1>, <nEXP2> [Say < EXP> [Picture <cEXP1>]]

[Color <cEXP2>] [Get < VARIABLE > [Picture <cEXP3>]

[Color <cEXP4>] [When <IEXP>][Range <nEXP3>, <nEXP4>]
[Valid <IEXP>]]

Summer 87, 5.0, 5.01

The When clause was added in version 5.0 and the Color clause in 5.01.
The Valid and Range clauses are mutually exclusive in verslons 5.0 and
above. 5.0 and 5.01 handle incorrect date entry differently than Sum-

@..Say... Get 3

mer 87. They don't restore the original date as did Summer 87. Instead,
the newer versions home the cursor in the get field and allow the user to
edit the incorrect date. Pressing Escape in a get field restores the original
value to the field and redisplays the value on-screen. Summer 87
doesn’t redisplay the value. The 5.0 and 5.01 versions also clip any gets
or says that extend past the end of line rather than continuing them on
the next line of the screen. Most of these changes are due to the fact that
both versions 5.0 and 5.01 provide enhanced get handling through inter-
nal routines. Using the get object provides additional flexibility over the
get command at the expense of increased complexity. Chapter 4
describes get objects in detail. In addition, both versions use two new
functions, DevOut() and DevPos(), to handle says. These functions are
not documented in the 5.0 manual, but you can use DevOut() to perform
any full-screen display task.

This command performs three separate and independent functions.
The first function positions the cursor. nEXP1 is the cursor row and
nEXP2 is the cursor column. Using the optional Say argument displays
EXP at the specified location. Using the optional Get argument obtains
keyboard input up to the length of VARIABLE at the specified location. In
both cases, the optional Picture argument formats the input or output.
TABLE 1-1 provides a listing of the legal picture functions and templates. A
function is a shorthand method of formatting the picture string. Precede
each picture function with the @ symbol. A ternplate specifies the format
of each character separately. The optional Color argument provides the
means to set the colors for that specific say or get. It uses the same color
setup described in chapter 2 for the SetColor() function. The optional
When argument allows you to display the say and get portions of the com-
mand, but does not allow the user to enter information unless IEXP is sat-
isfied. The optional Range argument determines the range of numbers
Clipper accepts for numeric input. nEXP3 determines the lower limit and
nEXP4 determines the upper limit. The optional Valid argument deter-
mines legal input criteria. Clipper accepts input that results in a true con-
dition. This allows you to create UDFs for processing data input by the
user. However, at this level of complexity it’s easier to use a get object in
place of the @...Get command when using version 5.0 or above. EXAM-
PLE:

@ 15, 15 say "Enter your age: " get AGE picture ‘999’ range 5, 100

@ <nEXP1>, <nEXP2>

To <nEXP3>, <nEXP4> [Double] [Color <cEXP>]

Summer 87, 5.0, 5.01

5.01 provides a new function, DispBox(), in place of this command. The
DispBox{) function provides greater flexibility and is easier to use than
the @...Box command. The Color clause was added in version 5.01.

4 Clipper commands

