ANDER & SONNESSA

PRINCIPLES of CHEMISTRY

An Introduction to Theoretical Concepts

PRINCIPLES of CHEMISTRY

An Introduction to Theoretical Concepts

The Macmillan Company, New York Collier-Macmillan Limited, London

© COPYRIGHT, THE MACMILLAN COMPANY, 1965

All rights reserved. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without permission in writing from the Publisher.

First Printing

Library of Congress Catalog Card Number: 65-13873

THE MACMILLAN COMPANY, NEW YORK COLLIER-MACMILLAN CANADA, LTD. TORONTO, ONTARIO

Printed in the United States of America

PRINCIPLES of CHEMISTRY

CONCEPTS OF CHEMISTRY SERIES

PAUL ANDER

Associate Professor of Chemistry Seton Hall University

ANTHONY J. SONNESSA

Associate Professor of Chemistry Seton Hall University

Preface

During the past few years it has been generally recognized that the initial college course in chemistry should employ a more quantitative approach to the subject matter. There are two principal reasons for this point of view. First, research today requires more rigorous training in the quantitative aspects of science. Second, high school graduates currently seem to exhibit great enthusiasm for the modern ideas in chemistry; they have heard or read about many exciting topics in chemistry, such as bonding theory, nuclear chemistry, and the structure of nucleic acids and proteins. To maintain and extend this interest, the rudiments of some modern topics should be presented in the freshman course.

For these and other reasons, chemistry curricula are in the process of revision. Course content has been updated for analytical, inorganic, organic, and physical chemistry. In each of these courses, stress has been placed upon principles rather than upon descriptive aspects. One need only look at recently published textbooks in these areas to become aware of this trend. The movement toward presenting material of a more advanced nature in these courses creates two basic needs which must be satisfied in the introductory course. First, it is essential that the freshman course prepare the student for the advanced material presented in these upper-level courses by introducing him to the language used; and second, freshman course

viii Preface

should include those topics that are either omitted or treated superficially in the later courses to provide more time for the advanced material.

The nature of the work performed today in physics, biology, and engineering requires an understanding of chemical principles, and the freshman chemistry course taken by students in these areas should provide them with the necessary background. This book has been written to meet the needs of such students, as well as the chemistry major. Most of the material has been presented to a select group of science majors at Seton Hall University in a course that has been most stimulating to both the instructor (P. A.) and the students.

Wherever possible, the research approach has been employed: First, the experimental facts are presented, then a theory is advanced to explain the facts. For thorough understanding of the later chapters, the student must be familiar with certain basic physical and mathematical terms. These are therefore reviewed in Chapter 1 as an integral part of the text, rather than being relegated to an appendix. Chapter 2 deals with the experimental foundations of the quantum theory. The application of this theory to atomic structure is discussed, and the theory is correlated with the properties of atoms and molecules. In Chapter 3, the quantum theory is extended to the bonding of atoms in molecules. The student is introduced to the qualitative ideas of the bonding theories and to the results derived from these theories. Descriptive inorganic and organic chemistry has not been discussed systematically in this book because the authors feel that it is covered more adequately in the upper-level courses. However, the principles described in the book are applied to the chemistry of the elements whenever possible, and it is hoped that later courses will extend this application.

Chapter 4 extends the application of the principles to the formation of ionic compounds and to their properties in the solid state and in solution. The importance of understanding the arrangement of atoms and ions in the solid state cannot be denied. The elementary presentation of this material in the second part of the chapter should enable the student to better grasp the more advanced presentation given in physical chemistry courses.

Chapter 5 treats the properties of gases. The approach, once again, is to start with the experimental facts, then to explain the facts by using a theoretical model. The modifications in the model of an ideal gas necessary to explain the observed properties of real gases illustrate for the beginning student the need for reviewing theories in the light of new experimental findings.

The empirical and theoretical aspects of chemical equilibrium are treated separately in Sections I and II of Chapter 8. The student is first given a firm feeling for equilibrium by treating many types of equilibria empirically, in order to enable him to understand more readily the more abstract and difficult theoretical aspects of the subject. The breakdown is also for

Preface ix

the convenience of those instructors who desire to omit the theoretical aspects entirely because of time limitations.

There is great interest today in biological macromolecules, which are usually discussed in elementary biochemistry and biology courses. Accordingly, an introduction to the nature of macromolecules has been presented in Chapter 10. Also presented are the mechanisms for the formation of polymers which provide the student with excellent, simple examples of reaction mechanisms.

Although nuclear chemistry is usually included in physical chemistry texts, it is rarely presented in physical chemistry courses and the principles of this subject are generally not provided for in the undergraduate curriculum. Since the principles of nuclear chemistry can be presented using only algebra, it can be part of a freshman course.

The authors have tried to arrange the material in this book so that certain topics can be omitted if the teacher desires. This material, however, is there for the more interested student. Hopefully, the student will find the problems challenging. The authors have tried to include some problems which illustrate important principles not fully developed in the text, so that the student can deduce them for himself.

A minimum knowledge of calculus is required for Chapters 8 (Section II), 9, and 10 only. The other chapters require only knowledge of algebra.

The authors thank those who have aided them, both directly and indirectly, in this project. We are indebted to Professors Kenneth Wiberg and Jack Halpern for their helpful comments on the manuscript. We are further indebted to Professor Eugene Kupchik for his perusal of the entire manuscript. We are grateful to Professor Charles Erickson for making sets of problems available to us for inclusion in the book. We gratefully acknowledge the support and encouragement given us during this project by several of our colleagues at Seton Hall University. Special thanks are due Mrs. Sally Kynor Johnson, whose excellent typing of the manuscript was of great aid, and Miss Lynn Ebbets, who assisted with the typing. We are particularly indebted to our past teachers and to our students, who have been, and remain, sources of stimulation.

We will be grateful for any constructive criticism of this book.

Paul Ander Anthony J. Sonnessa

South Orange, New Jersey

Contents

Review of Mathematical and Physical Terms	1
1-1 SCIENCE	, 1
1-1.1 Observations and Measurements1-1.2 Precision of Experimental Measurements	2
1–2 equations and graphs	5
1-2.1 Linear Equations	6
1-2.2 Inverse First-power Relations	
1-2.3 Quadratic Equations	8 9
1-2.4 Summation	12
1-2.5 Exponents and Logarithms	13
1-2.6 Exponential and Logarithmic Functions	17
1–3 definitions from mechanics and electricity	19
1-3.1 Units of Force	21
1-3.2 Work and Energy	21
1-3.3 Conservation and Transformation of Energy	23
1-3.4 Motion in a Circle; Centripetal and Centrifugal	
Forces	24
1-3.5 Forces Acting Between Charged Bodies;	
Coulomb's Law	25

n	
	Ħ

	 1-3.6 The Electric Field 1-3.7 The Electric Potential 1-3.8 Movement of Charge 1-3.9 Electromagnetism 1-3.10 Force Acting on a Current in a Magnetic Field 	27 28 29 30 31
2	Atomic Structure	37
	2-1 discharge of electricity through gases	37
	2–2 determination of e/m for cathode rays	40
	2–3 determination of the charge on an electron	43
	2–4 CONCEPTS OF THE ATOM AND THE MOLECULE	46
	2–5 ISOTOPES AND THE MASS SPECTROGRAPH	47
	2–6 ATOMIC AND MOLECULAR WEIGHTS	50
	2–7 CHEMICAL EQUATIONS	53
	2–8 EQUIVALENT WEIGHTS	55
	2–9 ORIGIN OF THE QUANTUM THEORY	57
	2–10 BOHR'S MODEL OF THE ATOM	65
i i	2–11 QUANTUM NUMBERS	74
	2–12 ELECTRONIC CONFIGURATION OF THE ELEMENTS	76
	2–13 PERIODIC PROPERTIES OF THE ELEMENTS 2–14 THE WAVE CONCEPT OF THE ELECTRON	79 92
3	Covalent Bond	100
	3-1 VALENCE	100
		100 101
	 3-1 VALENCE 3-2 OXIDATION NUMBER 3-3 TYPES OF CHEMICAL BONDS 	
	3–2 OXIDATION NUMBER	101
	3–2 OXIDATION NUMBER 3–3 TYPES OF CHEMICAL BONDS	101 102
	3-2 OXIDATION NUMBER 3-3 TYPES OF CHEMICAL BONDS 3-4 OCTET RULE	101 102 105
	3-2 OXIDATION NUMBER 3-3 TYPES OF CHEMICAL BONDS 3-4 OCTET RULE 3-5 LEWIS FORMULAS 3-6 MULTIPLE ELECTRON-PAIR BONDS 3-7 ODD-ELECTRON COMPOUNDS	101 102 105 106
	3-2 OXIDATION NUMBER 3-3 TYPES OF CHEMICAL BONDS 3-4 OCTET RULE 3-5 LEWIS FORMULAS 3-6 MULTIPLE ELECTRON-PAIR BONDS	101 102 105 106 106
	3-2 OXIDATION NUMBER 3-3 TYPES OF CHEMICAL BONDS 3-4 OCTET RULE 3-5 LEWIS FORMULAS 3-6 MULTIPLE ELECTRON-PAIR BONDS 3-7 ODD-ELECTRON COMPOUNDS	101 102 105 106 106 107
	3-2 OXIDATION NUMBER 3-3 TYPES OF CHEMICAL BONDS 3-4 OCTET RULE 3-5 LEWIS FORMULAS 3-6 MULTIPLE ELECTRON-PAIR BONDS 3-7 ODD-ELECTRON COMPOUNDS 3-8 VALENCE BOND THEORY 3-8.1 Directional Character of Covalent Bonds; Hybrid Orbitals	101 102 105 106 106 107
	3-2 OXIDATION NUMBER 3-3 TYPES OF CHEMICAL BONDS 3-4 OCTET RULE 3-5 LEWIS FORMULAS 3-6 MULTIPLE ELECTRON-PAIR BONDS 3-7 ODD-ELECTRON COMPOUNDS 3-8 VALENCE BOND THEORY 3-8.1 Directional Character of Covalent Bonds; Hybrid Orbitals 3-8.2 Hybridization Involving d Orbitals; Complex	101 102 105 106 106 107 107
	3-2 OXIDATION NUMBER 3-3 TYPES OF CHEMICAL BONDS 3-4 OCTET RULE 3-5 LEWIS FORMULAS 3-6 MULTIPLE ELECTRON-PAIR BONDS 3-7 ODD-ELECTRON COMPOUNDS 3-8 VALENCE BOND THEORY 3-8.1 Directional Character of Covalent Bonds; Hybrid Orbitals 3-8.2 Hybridization Involving d Orbitals; Complex Compounds	101 102 105 106 106 107 107
	3-2 OXIDATION NUMBER 3-3 TYPES OF CHEMICAL BONDS 3-4 OCTET RULE 3-5 LEWIS FORMULAS 3-6 MULTIPLE ELECTRON-PAIR BONDS 3-7 ODD-ELECTRON COMPOUNDS 3-8 VALENCE BOND THEORY 3-8.1 Directional Character of Covalent Bonds; Hybrid Orbitals 3-8.2 Hybridization Involving d Orbitals; Complex	101 102 105 106 106 107 107
	 3-2 OXIDATION NUMBER 3-3 TYPES OF CHEMICAL BONDS 3-4 OCTET RULE 3-5 LEWIS FORMULAS 3-6 MULTIPLE ELECTRON-PAIR BONDS 3-7 ODD-ELECTRON COMPOUNDS 3-8 VALENCE BOND THEORY 3-8.1 Directional Character of Covalent Bonds; Hybrid Orbitals 3-8.2 Hybridization Involving d Orbitals; Complex Compounds 3-8.3 Helferich's Rules 3-8.4 Valence Shell Electron-Pair Repulsion Theory of Directed Valence 3-8.5 Resonance 	101 102 105 106 107 107 109
	 3-2 OXIDATION NUMBER 3-3 TYPES OF CHEMICAL BONDS 3-4 OCTET RULE 3-5 LEWIS FORMULAS 3-6 MULTIPLE ELECTRON-PAIR BONDS 3-7 ODD-ELECTRON COMPOUNDS 3-8 VALENCE BOND THEORY 3-8.1 Directional Character of Covalent Bonds; Hybrid Orbitals 3-8.2 Hybridization Involving d Orbitals; Complex Compounds 3-8.3 Helferich's Rules 3-8.4 Valence Shell Electron-Pair Repulsion Theory of Directed Valence 	101 102 105 106 107 107 109 120 124
	 3-2 OXIDATION NUMBER 3-3 TYPES OF CHEMICAL BONDS 3-4 OCTET RULE 3-5 LEWIS FORMULAS 3-6 MULTIPLE ELECTRON-PAIR BONDS 3-7 ODD-ELECTRON COMPOUNDS 3-8 VALENCE BOND THEORY 3-8.1 Directional Character of Covalent Bonds; Hybrid Orbitals 3-8.2 Hybridization Involving d Orbitals; Complex Compounds 3-8.3 Helferich's Rules 3-8.4 Valence Shell Electron-Pair Repulsion Theory of Directed Valence 3-8.5 Resonance 	101 102 105 106 107 107 109 120 124 125 131

CONTENTS

Contents			xiii
		DIPOLE MOMENTS PARTIAL COVALENT BOND CHARACTER AND	144
		ELECTRONEGATIVITY	149
		THE HYDROGEN BOND	155
		ELECTRON-DEFICIENT MOLECULES	157
	3–14	RARE GAS COMPOUNDS	159
4	Prope	rties of Ionic Compounds	163
		SECTION I FORMATION OF IONS	
	4–1	FORMATION OF AN ION	164
		4-1.1 Ionization Potential and Electron Affinity	172
	4–2	FORMATION OF AN IONIC BOND	176
		SECTION II IONS IN SOLIDS	
		FORMATION OF AN IONIC SOLID	183
	4–4	THE ARRANGEMENT OF IONS IN CRYSTALS	189
		4-4.1 Lattice Planes	192
		4-4.2 Lattice Planes in Cubic Crystals	195
	4–5	DIFFRACTION OF ELECTROMAGNETIC RADIATION	199
		4-5.1 Experimental Methods of X-Ray Diffraction 4-5.2 The Structure of Sodium Chloride from X-Ray Diffraction	205 209
		4-5.3 Avogadro's Number from Lattice Dimensions	211
	4–6	AFFECT OF ION SIZE ON CRYSTAL GEOMETRY	213
	4–7	COMPLEX IONS	222
		4-7.1 Factors Affecting the Formation of Complex Ions	224
		4-7.2 Isomerism in Complex Ions	227 236
		4–7.3 Crystal Field Theory	236
	4.0	SECTION III IONS IN SOLUTION	244
		SOLUBILITY OF IONIC SALTS CONCENTRATION UNITS	244 248
	2 2	THE ELECTROLYTIC CELL AND THE LAWS OF	240
	4 –10	ELECTROLYSIS	254
	4-11	CONDUCTIVITY OF ELECTROLYTIC SOLUTIONS	258
		4-11.1 Dissociation of Strong and Weak Electrolytes	269
	4-12	THEORIES OF ACIDS AND BASES	271
		4-12.1 Titrations of Acids and Bases	279
	4–13	ELECTROMOTIVE FORCE	280
		4-13.1 Calomel Electrode 4-13.2 Lead Storage Cell and Dry Cell	291 292

xiv Contents

zi.		4-13.3 Balancing Oxidation-Reduction Reactions	293
		4-13.4 Normality in Oxidation-Reduction Reactions	297
5	The C	Gaseous State	304
		THE PHYSICAL STATES OF MATTER	304
	5-2	MEASUREMENT OF GAS PRESSURE; THE BAROMETER	206
	5_3	AND MANOMETER THE GAS LAWS	306 309
	5-5		
		5-3.1 Boyle's Law 5-3.2 Charles's Law	310 312
		5-3.3 The Equation of State	316
		5-3.4 Dalton's Law of Partial Pressures	320
	5–4	KINETIC THEORY OF GASES	322
		5-4.1 Derivation of the Ideal Gas Equation from the Kinetic Theory	323
	5-5	THE DISTRIBUTION OF MOLECULAR VELOCITIES	327
	5–6	DEVIATIONS FROM IDEAL GAS BEHAVIOR	334
		5-6.1 Causes for Deviation from Ideality; the van der	220
		Waals Equation 5-6.2 Determination of Molecular Weight of Real Gases	338 345
		5-6.3 The Nature of Intermolecular Forces	347
	5–7	THE MEAN FREE PATH OF GAS MOLECULES	350
	5–8	THE HEAT CAPACITIES OF GASES AND THE EQUI-	
		PARTITION-OF-ENERGY PRINCIPLE	354
6			
O	The I	iquid State	367
	6–1	GENERAL COMPARISON OF SOLIDS, LIQUIDS, AND	
		GASES	367
	6–2	THE LIQUEFACTION OF GASES AND THE CRITICAL	
8.		STATE	368
		VAPOR PRESSURE	373
		BOILING POINT	377
		FREEZING POINT	378
		SUBLIMATION VISCOSITY OF LIQUIDS	380
		SURFACE TENSION	381 385
	0-0	BOREMOE IEMBION	505
7	Prope	arties of Solutions	201

Contents		xv

7–1 INTRODU 7–2 vapor pi	CTION RESSURE OF SOLUTIONS CONTAINING	391
VOLATILE	E COMPONENTS	392
7–2.1 Ide	eal Solutions; Raoult's Law	392
	onideal Solutions	394
7–2.3 He	nry's Law	397
	POINT OF SOLUTIONS CONTAINING	
VOLATILE	E COMPONENTS	403
7–3.1 Ide	eal Solutions	403
	onideal Solutions	410
7–3.3 lm	miscible Components	. 411
	OLUTIONS CONTAINING NONVOLATILE	41.7
SOLUTES		414
	por Presure Lowering	415
	iling Point Elevation	416
	eezing Point Lowering motic Pressure	419 422
	lligative Properties of Solutions of Electrolytes	426
	e Nernst Distribution Law	429
8 Chemical Equi	librium	436
8 Chemical Equi	librium ection i empirical introduction	436
_		436
SI	ECTION I EMPIRICAL INTRODUCTION	436
SI 8–1 law of 0	ECTION I EMPIRICAL INTRODUCTION AND APPLICATIONS	
8–1 law of 0 8–2 equilibr units	ECTION I EMPIRICAL INTRODUCTION AND APPLICATIONS CHEMICAL EQUILIBRIUM LIUM CONSTANTS EXPRESSED IN DIFFERENT	
8–1 law of 0 8–2 equilibr units	ECTION I EMPIRICAL INTRODUCTION AND APPLICATIONS CHEMICAL EQUILIBRIUM	436 441
8–1 law of 0 8–2 equilibr units	ECTION I EMPIRICAL INTRODUCTION AND APPLICATIONS CHEMICAL EQUILIBRIUM LIUM CONSTANTS EXPRESSED IN DIFFERENT ES AFFECTING THE EQUILIBRIUM	436
8–1 LAW OF 0 8–2 EQUILIBR UNITS 8–3 VARIABLI CONCENT 8–3.1 Eff	ECTION I EMPIRICAL INTRODUCTION AND APPLICATIONS CHEMICAL EQUILIBRIUM LIUM CONSTANTS EXPRESSED IN DIFFERENT ES AFFECTING THE EQUILIBRIUM CRATIONS Cect of Temperature Change	436 441 444 444
8–1 LAW OF 0 8–2 EQUILIBR UNITS 8–3 VARIABLI CONCENT 8–3.1 Eff 8–3.2 Eff	ECTION I EMPIRICAL INTRODUCTION AND APPLICATIONS CHEMICAL EQUILIBRIUM LIUM CONSTANTS EXPRESSED IN DIFFERENT ES AFFECTING THE EQUILIBRIUM ERATIONS Fect of Temperature Change ect of Concentration Change	436 441 444 444 446
8-1 LAW OF 0 8-2 EQUILIBR UNITS 8-3 VARIABLE CONCENT 8-3.1 Eff 8-3.2 Eff	ECTION I EMPIRICAL INTRODUCTION AND APPLICATIONS CHEMICAL EQUILIBRIUM LIUM CONSTANTS EXPRESSED IN DIFFERENT ES AFFECTING THE EQUILIBRIUM FRATIONS Eect of Temperature Change Eect of Concentration Change Eect of Pressure Change	436 441 444 444 446
8-1 LAW OF C 8-2 EQUILIBR UNITS 8-3 VARIABLE CONCENT 8-3.1 Eff 8-3.2 Eff 8-3.3 Eff	ECTION I EMPIRICAL INTRODUCTION AND APPLICATIONS CHEMICAL EQUILIBRIUM LIUM CONSTANTS EXPRESSED IN DIFFERENT ES AFFECTING THE EQUILIBRIUM FRATIONS Cect of Temperature Change Cect of Concentration Change Cect of Pressure Change Cect of Pressure Change	436 441 444 446 446 448
8-1 LAW OF 0 8-2 EQUILIBR UNITS 8-3 VARIABLE CONCENT 8-3.1 Eff 8-3.2 Eff 8-3.3 Eff 8-4 AQUEOUS 8-5 THE IONI	ECTION I EMPIRICAL INTRODUCTION AND APPLICATIONS CHEMICAL EQUILIBRIUM LIUM CONSTANTS EXPRESSED IN DIFFERENT ES AFFECTING THE EQUILIBRIUM FRATIONS Fect of Temperature Change Fect of Concentration Change Fect of Pressure Change Fect of Pressure Change FES SOLUTIONS OF WEAK ACIDS AND BASES ZATION OF WATER AND THE PH SCALE	436 441 444 446 446 448 451
8-1 LAW OF 0 8-2 EQUILIBR UNITS 8-3 VARIABLE CONCENT 8-3.1 Eff 8-3.2 Eff 8-3.3 Eff 8-4 AQUEOUS 8-5 THE IONE 8-6 BUFFEREI	ECTION I EMPIRICAL INTRODUCTION AND APPLICATIONS CHEMICAL EQUILIBRIUM LIUM CONSTANTS EXPRESSED IN DIFFERENT ES AFFECTING THE EQUILIBRIUM FRATIONS Eect of Temperature Change Fect of Concentration Change Fect of Pressure Change Es SOLUTIONS OF WEAK ACIDS AND BASES ZATION OF WATER AND THE PH SCALE D SOLUTIONS	436 441 444 446 446 448 451 454
8-1 LAW OF C 8-2 EQUILIBR UNITS 8-3 VARIABLE CONCENT 8-3.1 Eff 8-3.2 Eff 8-3.3 Eff 8-4 AQUEOUS 8-5 THE IONI 8-6 BUFFEREI 8-7 POLYFUN	ECTION I EMPIRICAL INTRODUCTION AND APPLICATIONS CHEMICAL EQUILIBRIUM LIUM CONSTANTS EXPRESSED IN DIFFERENT ES AFFECTING THE EQUILIBRIUM FRATIONS Eect of Temperature Change Eect of Concentration Change Eect of Pressure Change Es SOLUTIONS OF WEAK ACIDS AND BASES ZATION OF WATER AND THE PH SCALE D SOLUTIONS ECTIONAL ACIDS AND BASES	436 441 444 446 446 448 451 454 457
8-1 LAW OF 0 8-2 EQUILIBR UNITS 8-3 VARIABLE CONCENT 8-3.1 Eff 8-3.2 Eff 8-3.3 Eff 8-4 AQUEOUS 8-5 THE IONE 8-6 BUFFEREI	ECTION I EMPIRICAL INTRODUCTION AND APPLICATIONS CHEMICAL EQUILIBRIUM LIUM CONSTANTS EXPRESSED IN DIFFERENT ES AFFECTING THE EQUILIBRIUM FRATIONS Eect of Temperature Change Eect of Concentration Change Eect of Pressure Change Es SOLUTIONS OF WEAK ACIDS AND BASES ZATION OF WATER AND THE PH SCALE D SOLUTIONS ECTIONAL ACIDS AND BASES	436 441 444 446 446 448 451 454
8-1 LAW OF 0 8-2 EQUILIBR UNITS 8-3 VARIABLE CONCENT 8-3.1 Eff 8-3.2 Eff 8-3.3 Eff 8-4 AQUEOUS 8-5 THE IONE 8-6 BUFFEREI 8-7 POLYFUN 8-8 HYDROLY 8-8.1 Sal	AND APPLICATIONS CHEMICAL EQUILIBRIUM LIUM CONSTANTS EXPRESSED IN DIFFERENT ES AFFECTING THE EQUILIBRIUM FRATIONS Fect of Temperature Change Fect of Concentration Change Fect of Pressure Change FECT OF WEAK ACIDS AND BASES EXATION OF WATER AND THE PH SCALE FOR SOLUTIONS FOR CONTROL OF SOLUTIONS	436 441 444 446 446 451 454 457 460 460
8-1 LAW OF C 8-2 EQUILIBR UNITS 8-3 VARIABLE CONCENT 8-3.1 Eff 8-3.2 Eff 8-3.3 Eff 8-4 AQUEOUS 8-5 THE IONE 8-6 BUFFEREI 8-7 POLYFUN 8-8 HYDROLY 8-8.1 Sal 8-8.2 Sal	AND APPLICATIONS CHEMICAL EQUILIBRIUM LIUM CONSTANTS EXPRESSED IN DIFFERENT ES AFFECTING THE EQUILIBRIUM FRATIONS Fect of Temperature Change Fect of Concentration Change Fect of Pressure Change FECT OF WEAK ACIDS AND BASES ZATION OF WATER AND THE PH SCALE D SOLUTIONS FECTIONAL ACIDS AND BASES FOR SOLUTIONS F	436 441 444 446 446 451 454 457 460 460 462
8-1 LAW OF CONTROL STATE	AND APPLICATIONS CHEMICAL EQUILIBRIUM LIUM CONSTANTS EXPRESSED IN DIFFERENT ES AFFECTING THE EQUILIBRIUM FRATIONS Fect of Temperature Change Fect of Concentration Change Fect of Pressure Change FECT OF WEAK ACIDS AND BASES EXATION OF WATER AND THE PH SCALE FOR SOLUTIONS FOR CONTROL OF SOLUTIONS	436 441 444 446 446 451 454 457 460 460

xvi Contents

8-9	TITRATION OF ACIDS AND BASES	467
	8-9.1 Strong Acids and Strong Bases	468
	8-9.2 Weak Acids and Strong Bases 8-9.3 Indicators	470 472
	COMPLEX ION EQUILIBRIA	475
0-11	EQUILIBRIUM BETWEEN IONS IN THE SOLID AND LIQUID PHASES	477
		477
	 8-11.1 Solubility and Solubility Product 8-11.2 Effect of a Common Ion on the Solubility of Slightly Soluble Salts 	477
	8-11.3 Separation of Ions	480
	8-11.4 Effect of Hydrolysis on the Solubility of Slightly Soluble Salts	482
8–12	EQUILIBRIUM IN SYSTEMS CONTAINING SOLID AND	
	GASEOUS PHASES	483
	SECTION II GENERAL THEORY—	
	THERMODYNAMICS	89000
8–13	THE NATURE OF THERMODYNAMICS	489
	8-13.1 Definition of Thermodynamic Terms8-13.2 Definition of Temperature	491 494
	THE FIRST LAW OF THERMODYNAMICS	497
	ENTHALPY	506
	HEAT CAPACITY OF GASES	507
	REVERSIBLE ADIABATIC PROCESSES THERMOCHEMISTRY	508 512
0-10		512
	8–18.1 Standard States 8–18.2 Enthalpy of Reactions	513
	8-18.3 Hess's Law	515
	8-18.4 Relationship Between Heats of Reaction at Constant Pressure and at Constant Volume	518
	8–18.5 Heat of Solution	520
	8-18.6 Enthalpy of Formation of Ions in Solution	521
	8-18.7 Bond Energies8-18.8 Dependence of Heat Capacity and of Enthalpy of	523
	Reaction on Temperature	527
8–19	THE SECOND LAW OF THERMODYNAMICS	531
	8-19.1 Carnot Cycle	533
	8-19.2 Molecular Interpretation of Entropy 8-19.3 Examples of Entropy Calculations	541 542
8-20	CRITERIA FOR EQUILIBRIUM	546
	8-20.1 The Work Function and the Gibbs Free Energy	548

CONTENTS	1	*. b.	xvii
	8-21	FREE ENERGY AND THE EQUILIBRIUM CONSTANT	552
		EQUILIBRIUM BETWEEN PHASES; THE CLAPYRON	
		EQUATION	555
	8-23	THE THIRD LAW OF THERMODYNAMICS	558
\circ	The R	Rates of Chemical Reactions—	
9		ical Kinetics	565
	9–1	INTRODUCTION	565
	9–2	THE REACTION RATE	566
		9-2.1 Reaction Order and the Rate Law 9-2.2 Experimental Methods	568 570
	9–3	FIRST-ORDER REACTIONS	571
		9-3.1 Example of a First-Order Reaction	575
	9–4	SECOND-ORDER REACTIONS	576
		9-4.1 Example of a Second-Order Reaction	579
	9–5	THIRD-ORDER REACTIONS	580
	9–6	ZERO-ORDER REACTIONS	582
	9–7	THE FRACTIONAL-LIFE OF A REACTION	583
	9–8	METHODS FOR DETERMINING THE REACTION ORDER	585
	9–9	THE INFLUENCE OF TEMPERATURE ON REACTION	
		RATES	588
	9–10	THE ARRHENIUS THEORY OF REACTION RATES; THE	
	0 11	ACTIVATED COMPLEX	590
		THE COLLISION THEORY OF REACTION RATES	595
	9-12	THE TRANSITION-STATE THEORY OF REACTION	500
	0 12	RATES	599
	9-13	UNIMOLECULAR GASEOUS DECOMPOSITION REACTIONS: STEADY-STATE APPROXIMATION	603
	9_14	REACTION MECHANISMS	606
	7-14	REACTION INECTIANISMS	000
10			
$\mathbf{I}\mathbf{U}$	Macro	omolecules	617
	10-1	CLASSIFICATION OF MACROMOLECULES	618
		MOLECULAR WEIGHT AVERAGES	626
		REACTIVITY OF LARGE MOLECULES	628
		CONDENSATION POLYMERIZATION	629
		FREE RADICAL POLYMERIZATION	633
	10–6	IONIC INITIATION OF VINYL POLYMERIZATIONS	638

			ı

C	S	JT	FI	J	Г
_	O.	• •			٠.

	10-7	CONFIGURATION OF MACROMOLECULES IN	
		SOLUTION	641
	10–8	INTRINSIC VISCOSITY	643
	10–9	OSMOTIC PRESSURE OF POLYMER SOLUTIONS	644
		LIGHT SCATTERING	645
		ION EXCHANGE RESINS	646
	10–12	SEVERAL NATURALLY OCCURRING POLYMERS	649
11	Prope	erties of Metals and Alloys	659
	11-1	INTRODUCTION	659
	11–2	ARRANGEMENT OF ATOMS IN METALS	660
	11–3	BONDING IN METALS	666
		11-3.1 Valence Bond Theory of the Metallic Bond11-3.2 Molecular Orbital Approach to the Band Theory of Solids	666
		11–3.3 Free Electron Theory of Metals	677
	11_4	INSULATORS AND SEMICONDUCTORS	686
		ALLOYS	691
	11-3	11-5.1 Classification of Alloys	691
	11–6	PHASE RULE	698
		11-6.1 One-Component Systems 11-6.2 Two-Component Systems	701 704
12	Nucle	ear Properties and Transformations	718
		INTRODUCTION	718
	12-2	BINDING ENERGY OF NUCLEI; THE ENERGY OF	
		NUCLEAR REACTIONS	720
	12-3	STABLE NUCLEI	724
*		FORCES BETWEEN NUCLEONS	726
		UNSTABLE NUCLEI; RADIOACTIVE DECAY LAW	727
	12–6	MODES OF DECAY OF UNSTABLE NUCLEI	731
		12-6.1 Gamma-Ray Decay	732
		12-6.2 Alpha-Ray Decay 12-6.3 Beta-Ray Decay	733 734
		12–6.4 Positron Decay	736
		12–6.5 K-Capture	737
	12-7	INDUCED NUCLEAR TRANSFORMATIONS	738
		FISSION AND FUSION OF NUCLEI	739
	•		