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Preface

In writing this book we sought to describe some of the important as-
pects and applications found in the wonderful world of optical microres-
onators. Of course we tell it from our respective points of view. These
vantage points have been clearly biased by the specific roads we took
during our investigations. We only hope that it does not detract from the
ideas and information collected in this research monologue. We would
never admit to perfection and cannot claim mathematical rigor in the
theoretical chapters nor detailed process recipes in the chapter on fabri-
cation. These circulating fields and their interactions have kept us busy
and entertained both conceptually and in the lab for the better part of a
decade. When we started out in this field, there was no textbook to con-
sult. It is our hope that students and researchers entering this field now
have such a guide.

We dedicate this effort to Erika, Priya, Rhea, Uma, Dalia, and Mariam.
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1. Introduction

1.1 Optical Microresonators

Optical microresonators have demonstrated great promise as fundamen-
tal building blocks for a variety of applications in photonics. They can
be implemented for such diverse applications such as lasers, ampli-
fiers, sensors, optical channel dropping filters (OCDFs), optical add/drop
(de)multiplexers (OADMSs), switches, routers, logic gates, and artificial me-
dia. For brevity and in keeping with their current usage in the literature
of this field, we specialize the term “microresonators” and generalize
the term “microring resonators.” We use these terms interchangeably in
this book to refer to any of a number of compact geometries that sup-
port cyclically propagating modes that close on themselves in a ring-like
geometry.

One particular embodiment of a microring resonator consists of an or-
dinary waveguide that channels light in a closed loop. But in general, the
loop can take the form of other closed shapes, such as a disk, racetrack,
or ellipse. In the case of a ring, the microresonator is simply a curved
waveguide closed onto itself forming a resonant cavity that supports both
transverse and longitudinal (here azimuthal) modes. The confinement
and channeling of light in this closed geometry, however, does not require
an inner dielectric boundary. This is evidenced by the existence of opti-
cal “whispering gallery” modes in a microdisk or microsphere resonator.
Placement of a microresonator near one or two waveguides (Fig. 1.1) en-
ables access to modes of the resonant cavity. In this particular arrange-
ment, the resonant modes are accessed through evanescent coupling —
a phenomena analogous to tunneling in solid-state physics. Component
wavelengths of an optical signal channeled in a waveguide are resonant
with the cavity if its (effective) circumference supports an integer number
of wavelengths. For these spectral components of the signal, an increased
circulation of intensity can build up in the resonator. The presence of a
second waveguide coupled to the ring enables extraction of the resonant,
circulating signal. Component wavelengths that do not resonate with the
ring bypass it altogether. Thus, at their most fundamental level, micror-
ing resonators act as a spectral filter and a temporary compressor of
energy density. These properties are not unique to microring resonators.
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Resonator

Input
/

Fig. 1.1. Schematic of an optical microring resonator add/drop filter.

Rather, they are common to all resonant cavities such as the well known
Fabry-Perot resonator.

Although functionally similar to Fabry-Perots, microring resonators
offer several advantages. First, their planar nature is naturally compati-
ble with monolithic microfabrication technologies. Second, high finesse
operation does not require multilayer or distributed Bragg reflectors but
is rather achieved by increasing the gap widths of evanescent couplers.
Third, because the equivalent injected, transmitted, and reflected waves
occupy spatially distinct channels, the need for costly Faraday circula-
tors is eliminated. Fourth, for the same reason, although there is only one
natural way to sequence arrays of Fabry-Perots (into multilayer stacks)
three altogether new possible arrangements for arrays of resonators are
enabled that differ qualitatively in many ways.

The small scale-size of microresonators currently achievable by state-
of-the-art fabrication methods is important for many reasons of which
we highlight two. First, because the propagation velocity of light is of
the order of a few hundred um per ps in most optical materials of in-
terest, high bandwidths (GHz to THz) are naturally attainable. Second,
their small dimensions allow the integration of many devices on the
same chip, enabling high-level functionalities such as ultrafast all-optical
signal processing at a heretofore unrealized compact scale. Because of
these inherent advantages, the very large-scale integration (VLSI) of high-
bandwidth photonics may rely on optical microresonators. In the next
section, we offer our perspective on how microresonators came to be
important components in the photonic toolbox.
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1.2 Historical Perspective

The “whispering gallery” effect was analyzed (with wave approaches) as
early as 1910 by Lord Rayleigh [1]. His analysis of the channeling of
acoustic waves by the dome of St. Paul’s cathedral in London is a pre-
cursor to similar methods applied to electromagnetic waves. Ring and
disk resonators for electromagnetic waves have since been implemented
in microwave applications starting in the early 1960s. In the optical do-
main, integrated ring resonators were proposed in 1969 by Marcatili at
Bell Labs [2].

The first guided optical ring resonator was demonstrated by Weber
and Ulrich in 1971 [3-5]. Weber and Ulrich’s device consisted of a
5-mm-diameter glass rod (n = 1.47) coated with Rhodamine-6G-doped
polyurethane (n = 1.55), for a resonator circumference of 31.4 mm.
Light was coupled in and out of the resonator with a prism. By pumping
the polymer with light from a N laser (A = 337.1 nm), they obtained
laser operation. The next relevant demonstration was by Haavisto and
Pajer in 1980 [6]. Their device was the first to incorporate integrated bus
waveguides made with a doped polymethyl methacrylate (PMMA) film on
quartz substrate. A significant feature of their work was that the device
was fabricated without lithography by using direct-writing with a 325-nm
He-Cd laser. Although they demonstrated low-loss waveguides and rings,
the ring was quite large (circumference 28.3 cm). Nevertheless coupling
to the ring was via evanescent coupling to integrated bus waveguides,
and the basic idea had been established.

In 1982, Stokes, Chodorow, and Shaw [7] demonstrated the first op-
tical glass fiber ring resonator, operating at A = 632.8 nm. Fibers un-
fortunately, do not lend themselves to compact integrated optics; their
resonator had a circumference of 3 m. Between 1982 and 1990, numerous
groups demonstrated integrated ring resonators based on glass. Early ef-
forts used ion-exchange from AgNO3, KNO3, and similar compounds that
modify the index of the glass, to make the waveguide core. Walker and
Wilkinson demonstrated a ring resonator with silver ion-exchanged glass
in 1983 [8] (circumference 3.1 mm, operating at A = 632.8 nm), as did
Mahapatra and Connors in 1986 [9,10] (circumference 4.1 mm, operating
at A = 632.8 nm). Honda, Garmire, and Wilson demonstrated a ring res-
onator with potassium ion-exchanged glass in 1984 [11] (circumference
25.1 cm). A related effort by Naumaan and Boyd in 1986 [12] used CVD
phosphosilicate glass films. Other efforts used Ti-exchanged LiNbO3 (Ti-
etgen, 1984 [13]), and proton-exchanged LiNbO3; (Mahapatra and Robin-
son, 1985 [14]). Tietgen’s work is especially significant as it represents
the first demonstration of a tunable ring resonator. Instead of a circular
ring, he used a waveguide loop with two 3-dB couplers. His device used
electro-optic tuning, had a circumference of a little over 24 mm, and op-
erated at A = 790 nm.
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Since the early efforts outlined above, there have been numerous
works in various doped and undoped silica-based glasses [15-25], Si-
(Si3Ny4, SiON, SiO2) [26-37], and polymers [38-41] in the past decade. Many
of these studies have reported multiring filters, temperature-insensitive
operation and so on. Oda’s work with TiO»-doped silica-glass rings rep-
resents the first demonstration of serially cascaded rings, with increased
free spectral range over single-ring devices. Rabiei’'s work with polymer
rings represents the first passive and active polymer ring resonator.

Microresonators constructed in III-V semiconductors began “seeing
light” in the early 1990s. Several groups demonstrated optically pumped
microdisk lasers in both GalnAsP-InP and IlI-Nitrides using the whisper-
ing-gallery; the smallest reported disks had circumferences of ~15 ym
[42-50]. Most of these early efforts did not incorporate bus waveguides
and relied on fibers to directly collect light from the disk. The first GaAs-
AlGaAs microring resonator laterally coupled to bus waveguides was
demonstrated by Rafizadeh et al. in 1997 at Northwestern University,
Evanston, IL [51,52]. Their smallest ring had a circumference of 32.8 ym.
Since then, members of Ping-Tong Ho's group at the Laboratory for Phys-
ical Sciences (LPS), College Park, MD, have demonstrated both laterally
and vertically coupled rings in GaAs-AlGaAs acting as multi ring devices,
switches, routers, and mux/demux operation [53-61]. The GalnAsP-InP
material system has proven problematic for passive microrings because
of processing difficulties resulting in high device losses. Nevertheless,
the first vertically coupled passive InP-based rings were demonstrated
by Ho's group [59, 62, 63]. Other groups have concentrated on disk res-
onators; the group at the University of Southern California, for example,
has demonstrated active and passive vertically coupled microdisk res-
onators [64,65].

1.3 Putting the “Micro” in “Microring”

Initial efforts toward the fabrication of integrated ring resonators pro-
duced very large devices because the index contrast An between the core
and cladding was small, and operation with large radii of curvature min-
imizes bending losses [2,66-69]. For example, the device fabricated by
Honda et al. had 0.052 < An < 0.067 and a radius of 4.5 cm [11]. Also,
the device was multi mode, and there was considerable mode mixing,
leading to a large background of non resonant light and the convolution
of resonances from multiple modes.

The construction of microrings 10-ym in diameter or smaller is a chal-
lenging effort often requiring high index contrast, anisotropically etched
pedestal waveguide designs with ultrasmooth sidewalls. In addition, pre-
cise coupling gap widths with extremely tight tolerances are demanded



