Software
uality

A Framework
Jfor Success 1n
Softrware
Development

and Support

NG

JOC SANDERS
EUGENE CURRAN

.P@s ADDISON-WESLEY

Software
Quality

A Framework

for Success in
Software Development

and Support

JOC SANDERS
EUGENE CURRAN

Centre for Software Engineering, Dublin

Addison-Wesley
Harlow, England « Reading, Massachusetts « Menlo Park, California
New York « Don Mills, Ontario « Amsterdam s Bonn « Sydney « Singapore
Tokyo « Madrid « San Juan « Milan « Mexico City « Seoul « Taipei

© 1994 by the ACM Press. A division of the Association for Computing
Machinery

Addison Wesley Longman Limited
Edinburgh Gate

Harlow

Essex CM20 2JE

United Kingdom

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without prior written
permission of the publisher.

The programs in this book have been included for their instructional value. They
have been tested with care but are not guaranteed for any particular purpose. The
publisher does not offer any warranties or representations, nor does it accept any
liabilities with respect to the programs.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Addison-Wesley has made every attempt to
supply trademark information about manufacturers and their produc¢ts mentioned

in this book.

Cover designed by Arthur op den Brouw, Reading
Printed in Malaysia, PP

First printed in 1994. Reprinted 1995, 1997 and 1998
ISBN 0-201-63198-9

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Library of Congress Cataloguing-in-Publication Data is available

Software
Quality

A Framework

for Success in
Software Development

and Support

ACM PRESS BOOKS

Editor-in-Chief Peter Wegner Brown University
International Editor Dines Bjgrner Technical University
(Europe) of Denmark
SELECTED TITLES

Object-Oriented Reuse, Concurrency and Distribution
Colin Atkinson

Advances in Database Programming Languages Francois Bangilhon
and Peter Buneman (Eds)

Algebraic Specification J.A. Bergstra, J. Heering and P. Klint (Eds)

Software Reusability (Volume 1: Concepts and Models)
Ted Biggerstaff and Alan Perlis (Eds)

Software Reusability (Volume 2: Applications and Experience)
Ted Biggerstaff and Alan Perlis (Eds)

Object-Oriented Software Engineering: A Use Case Driven Approach
Ivar Jacobson, Magnus Christerson, Patrik Jonnson and Gunnar Overgaard

Object-Oriented Concepts, Databases and Applications
Won Kim and Frederick H. Lochovsky (Eds)

Distributed Systems (2nd edn) Sape Mullender (Ed)
Computing: A Human Activity Peter Naur
The Oberon System: User Guide and Programmer’s Manual Martin Reiser

Programming in Oberon: Steps Beyond Pascal and Modula Martin Reiser and
Niklaus Wirth

The Programmer’s Apprentice Charles Rich and Richard C. Waters
User Interface Design Harold Thimbleby

Project Oberon: The Design of an Operating System and Compiler Niklaus
Wirth and Jiirg Gutknecht

Foreword

Led by theorists such as Shewart, Deming and Juran, practitioners at
Toyota, Honda, Xerox, Ford and many other firms around the world
have changed our expectations for quality — both as consumers and
producers. As consumers we have come to regard defects as
unacceptable. We expect products to work ‘out of the box” and to
give long and reliable service. We also expect them to anticipate and
meet our real needs, to be easy to use, and to be flexible for change
and modification (as in modular stereo, camera and computer
systems). Products that do not measure up to these standards are
considered ‘second class’ or ‘cut-rate” and can only demand cut-rate
prices. They will not be considered competitive in a global
marketplace.

As producers, our relation to quality has also changed. Our old
theory was that defects are inevitable, and that a certain number
should be allowed to get to the customer in order to maximize
profitability! We now realise that there is no inherent limit to the
level of quality that can be achieved. However, we have also learned
that the secret to continuously increasing quality is not more
stringent testing but a continuously improving quality process. In
other words, the new rule is ‘build quality in’ instead of ‘test defects
out’. But quality is a challenge that requires a commitment from the
entire firm, and a detailed plan of action. Fortunately, much has been
learned over the last 30 years about how to build a “‘quality system’
across a wide variety of businesses.

Not too surprisingly, the lessons learned initially in the
manufacturing sector, and which are now being applied to many
service and white collar activities, are only beginning to be applied
to software development. We have a long history of resisting the
analysis and redesign of our own processes, even as we analyze and
automate the processes of our brethren in other professions. We still
accept defects as part and parcel of the product. Rather than issuing
a warranty that our products are defect-free, we include a disclaimer
disavowing ourselves from responsibility. Surely something is
wrong here.

vi Software Quality

Fortunately, the European Community is actively encouraging
the institutionalization of software quality by promoting the ISO
9000 family of standards, which describes what is required of a
satisfactory quality system. ISO 9000 is widely recognized in Europe
and is rapidly gaining acceptance in the US and many other parts of
the world. It promises to become the global standard by which the
government, industrial and private consumers can judge the fitness
of suppliers. It can also serve as the blueprint by which suppliers can
achieve the quality level they desire. Happily, ISO 9000 contains
components specifically targeted for software development, and
these are the topic of Software Quality: A Framework for Success in
Software Development and Support.

In this clear, concise and highly-informative text, Joc Sanders and
Eugene Curran provide a ‘nuts-and-bolts’ guide for managers who
might ask the question, ‘'Why bother with ISO 9000 anyway?’
Starting with a bottom-line business rationale, Framework for Success
explains why quality will be a key competitive factor in the coming
years — not just in Europe, but around the world.

They map out the definition of quality in operational terms,
explain the many business benefits it can produce, and lay the
responsibility for achieving it squarely at the feet of top
management. Fortunately for wary managers, Sanders and Curran
don’t stop there. Framework for Success also explains how to
implement a Quality System throughout the company, from
assessing the organization, right through establishing procedures,
support activities, certification and training. Besides explaining how
each of these topics affect software quality, the book provides a
useful summary of ISO 9000 itself, and relates ISO 9000 to essential
quality characteristics and good engineering principles.

It's time for the software industry to come out of the ‘middle
ages’ and establish industrial-strength processes every bit as robust,
reliable and economical as those now in use in manufacturing and
service sectors. Software Quality: A Framework for Success in Software
Development and Support is an excellent place to start understanding
how you can employ ISO 9000 to reach your quality goals, and to
achieve certification under an international standard at the same
time.

Gene Forte
Executive Editor
CASE OUTLOOK

Preface

Why this book is the way it is

This book does not pretend to be a comprehensive, academic text,
telling you all that you could ever want to know about software
quality, and more. If it did, it would be much bigger, and you would
probably find it difficult to sift the important grain from the detailed
chaff! Instead, we have written a guidebook with the clear objective of
meeting the practical needs of busy software engineers and their
managers, working in real-world businesses. We believe these needs
are for a concise, readable book, with separate parts addressed to
two audiences:

Part 1 is a Manager’s Guide to Implementing a Quality System.
It gives high-level guidance on why and how to implement a Quality
System in a software organization. It also explains how to seek
certification for it, and gives up-to-date information about the ISO
9000 international standards for quality systems and alternatives to
them. It is for managers who are planning or initiating a software
quality programme, but it will also be of interest to practising
software engineers wanting an introduction to software quality
management.

Part 2 is a Software Engineer’s Guide to Best Practice. It presents
a guide to current best practice, drawn from a variety of current
international standards on software engineering, and also addresses
software support services. It can be used as a checklist during a
software quality programme, both to assess actual practice and to
define the objectives of proposed new practices.

We have considered the needs of large, medium and small
organizations, without compromising the requirements of the
international quality standards applicable to software, namely ISO
9001, ISO 9000-3, and ISO 9004-2. And we believe the guidance we
have given is relevant to all types of software organizations, from
commercial software houses, to management information systems
departments in user companies, to the developers of real-time and
embedded systems.

viii Software Quality

We hope that many companies will be able to use our book as a
basis from which to develop their own quality system by themselves.
Others may need expert advice and assistance as well. Our book may
not contain all the answers you need, but it will set you off in the
right direction.

The underlying philosophy

We have found it useful when starting to read a book, or when
deciding whether to buy it, to have some idea of the authors’
underlying approach and philosophy. It helps the reader to evaluate
what is likely to be relevant to him or her. So we feel it is proper for
us to declare some of the propositions and beliefs which we have
arrived at over the years, as working software managers and
engineers ourselves. We summarize them as follows:

* Quality is the key to success in the software business, as it is in
every other.

* The cheapest way to improve software productivity is to improve

software quality.

The quality of software support is as important as the quality of

the software product: the support environment must be engineered

as carefully as the software itself.

To achieve software quality, people and culture are as important as

technology - if not more so.

The only way to improve software quality reliably is to improve

the software process (which includes personnel, facilities,

equipment, technology and methodology).

® Process improvement is wusually unsuccessful unless top
management demonstrate genuine commitment and leadership.

* Quality and process improvement are an unrelenting endeavour: it
is always possible to do it a little better, a little faster, a little
cheaper.

¢ An ISO 9000-compliant quality system is a good early target for
many software organizations, but not for all.

* A software organization’s quality system must be tailored to its
specific needs and circumstances or it will not be both effective
and efficient.

e An effective software quality system uses good software
engineering practices, based on the following principles:

Quality principles
— Try to prevent defects from being introduced in the first place
— Ensure defects that get in are detected and corrected as early as

Preface ix

possible

— Establish and eliminate the causes as well as the symptoms of
defects

- Independently audit work for compliance with standards and
procedures

Management principles

— Define roles and responsibilities

— Plan the work

- Track progress against the plans and take corrective action where
necessary

— Progressively refine the plans

Engineering principles

- Analyze the problem before developing the solution

- Break complex problems into several less complex ones

- Ensure the subproblems knit together by controlling their
relationships.

Acknowledgements

The first draft of this book was written as part of an Irish national
initiative, co-ordinated by the National Software Directorate, with
support from the European Community Structural Funds. Without
their support, and the support of the Centre for Software
Engineering for which we both work, this book would not have been
possible.

Our thanks are due to the very many individuals, who have
helped us meet our objective by reviewing early drafts and providing
a wealth of valuable comments. They are too numerous to mention
by name, but include many colleagues in the Irish software industry,
and the staff of Addison-Wesley, our publishers. Such merits as this
book displays are in large part due to them, while its defects are of
course our own!

Lastly, we are very conscious of the enormous debt that we each
owe to those who have gone before us. Some of these are
acknowledged in the bibliography in Appendix B, but we recall here
also all those friends, teachers and colleagues from whom we have
learned everything that we know.

Joc Sanders

Eugene Curran

Centre for Software Engineering
Dublin, Ireland

Contents

Foreword v
Preface vii
PART 1

Manager’s Guide to Implementing a Quality System 1
1 Defining Software Quality 3
1.1 Why bother with Quality?

1.2 Quality — What is it? 6
2 Managing a Quality Company 13
2.1 Dedication to Customer Satisfaction 13
2.2 Emphasis on Continuous Improvement 14
2.3 Treating Suppliers as Business Partners 14
24 Communication and Teamwork 15
2.5 Empowering Employees 15
2.6 Commitment by Top Management 15
2.7 Total Quality Management 16
3 Implementing a Quality System 18
3:1 Towards a Quality System 18
3.2 Initiate a Quality Programme 20
3.3 Plan a Quality Programme 22
3.4 Implement the Cultural Programme 28
3.5 Implement the Technical Programme 30
3.6 Review and Evaluate 40

xi

xii Contents
4 Quality Certification 44
4.1 What is ISO 9000 Certification? 44
4.2 Reasons for ISO 9000 Certification 45
4.3 What ISO 9000 Certification Involves 46
4.4 ISO 9000 Certification around the World 50
4.5 Alternatives to ISO 9000 59
PART 2
Software Engineer’s Guide to Best Practice 67
5 Applying Best Practice to Projects 69
5.1 Software Engineering Definition 69
5.2 Quality Principles 70
5.3 Management Principles 73
5.4 Engineering Principles 75
5.5 Software Engineering Practices 77
6 Life Cycle Activities 80
6.1 Overview 80
6.2 Life Cycle Approaches 81
6.3 User Requirements 84
6.4 Software Requirements 88
6.5 Architectural Design 93
6.6 Production 99
6.7 Transfer 105
6.8 Maintenance 107
7 Supporting Activities 109
7.1 Overview 109
7.2 Project Management 110
7.3 Configuration Management 114
7.4 Verification 120
7.5 Software Quality Assurance (SQA) 126
8 Organization Level Activities 131
8.1 Process Management 131
8.2 Procurement 138
8.3 Training 139
8.4 Management Responsibility 139
Appendix A The ISO 9000 Series of International Standards and

their Use for Software 141

Contents xiii

Appendix B
Appendix C
Appendix D
Appendix E
Appendix F

Index

Additional Background and Reference Material
Definition of Quality Characteristics

Essential Practices Cross-referenced to ISO 9000-3
Summary of Essential Practices

Overview of the Capability Maturity Model

148

150

154

156

166

169

Part1

Manager’s Guide to
Implementing a Quality
System

Part 1 of this book gives guidance for managers of software
organizations on why and how to implement a quality system, and
how to seek certification for it.

Chapter 1 defines what we mean by software quality, and what a
quality system is. Chapter 2 deals with the human and cultural
issues which are so vital for success. Chapter 3 explains how to
implement a quality system, using a straight-forward five-step model.
Chapter 4 discusses how to demonstrate the effectiveness of the
quality system either by obtaining ISO 9000 certification, or using
other sources.

1

Defining Software Quality

1.1 Why Bother With Quality?

Why bother with quality? Because quality is critical for survival and
success. The market for software is increasingly a global one, and
your organization will not succeed in that market unless you
produce, and are seen to produce, quality products and services. If
you do not do so, your organization may not even survive. This is
the first message of the chapter. It applies as much to software
development and support as to any other product or service.

The word ‘quality’ means different things to different people. We
give a formal definition later and discuss its implications, but in
essence, quality means satisfying customers. A happy customer will
do repeat business.

There are several reasons why you should be concerned with
quality:

quality is now a competitive issue;

quality is essential for survival;

quality is essential for international marketing;
quality is cost-effective;

quality retains customers and increases profits;

e quality is the hallmark of world-class businesses.

1.1.1 Quality is Now a Competitive Issue

Software used to be a technical business, in which functionality was
the key determinant of success. Today, you can no longer rely on the
functionality of your products to win the day. Your competitors can
match your functionality relatively quickly and easily. The only way
to differentiate your product from those of your competitors, beyond
the short term, is by its quality, and the quality of support that goes
with it.

As the software market matures, customers want to be assured of
quality. They no longer accept your claims at face value, but expect
you to demonstrate quality. Certification to international quality

3

4 Software Quality

standards is becoming a prerequisite for getting business; not to have
certification will become a competitive disadvantage.

This applies to in-house information systems departments as well
as to commercial software organizations. Internal customers also
want quality assurance, and question increasingly whether work
should be carried out in-house or outsourced by external suppliers.

1.1.2 Quality is Essential for Survival

Customers are demanding demonstrable quality. If you cannot
deliver it, your ability to survive in a highly competitive and rapidly
changing market is in doubt. More and more large organizations are
deciding to reduce the number of suppliers they use, often by as
much as 90%. In the drive to improve their own quality, they want to
work closely with their chosen suppliers, whom they treat as business
partners. They often use quality certification as a way of selecting
suppliers.

1.1.3 Quality is Essential for International Marketing

The market for software is rapidly becoming global. The ability to
demonstrate quality gives even a small company credibility to enter
an export market.

The Single European Market came into being on 1 January 1993,
and the European Economic Area Agreement (EEA) became effective
in early 1993. The EEA countries (the European Community and
seven EFTA states — Austria, Finland, Iceland, Liechtenstein, Norway,
Sweden and Switzerland) represent the world’s largest trading bloc,
accounting for 40% of world trade, 30% of world production and
380m citizens. Government and multinational buyers in Europe are
already using certification to internationally recognized standards as
a criterion for shortlisting suppliers. Similar developments are taking
place in other world regions — for instance the North American Free
Trade Area (NAFTA).

It works both ways — your home market is vulnerable to quality
foreign imports unless you can compete on quality.

1.1.4 Quality is Cost-effective

An effective quality system leads to increased productivity and
permanently reduced costs, because it enables management to reduce
defect correction costs by emphasizing prevention.

Everyone in the software industry knows that the cost of
correcting defects in software late in development can be orders of

