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Foreword

Led by theorists such as Shewart, Deming and Juran, practitioners at
Toyota, Honda, Xerox, Ford and many other firms around the world
have changed our expectations for quality — both as consumers and
producers. As consumers we have come to regard defects as
unacceptable. We expect products to work ‘out of the box” and to
give long and reliable service. We also expect them to anticipate and
meet our real needs, to be easy to use, and to be flexible for change
and modification (as in modular stereo, camera and computer
systems). Products that do not measure up to these standards are
considered ‘second class’ or ‘cut-rate” and can only demand cut-rate
prices. They will not be considered competitive in a global
marketplace.

As producers, our relation to quality has also changed. Our old
theory was that defects are inevitable, and that a certain number
should be allowed to get to the customer in order to maximize
profitability! We now realise that there is no inherent limit to the
level of quality that can be achieved. However, we have also learned
that the secret to continuously increasing quality is not more
stringent testing but a continuously improving quality process. In
other words, the new rule is ‘build quality in’ instead of ‘test defects
out’. But quality is a challenge that requires a commitment from the
entire firm, and a detailed plan of action. Fortunately, much has been
learned over the last 30 years about how to build a “‘quality system’
across a wide variety of businesses.

Not too surprisingly, the lessons learned initially in the
manufacturing sector, and which are now being applied to many
service and white collar activities, are only beginning to be applied
to software development. We have a long history of resisting the
analysis and redesign of our own processes, even as we analyze and
automate the processes of our brethren in other professions. We still
accept defects as part and parcel of the product. Rather than issuing
a warranty that our products are defect-free, we include a disclaimer
disavowing ourselves from responsibility. Surely something is
wrong here.
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Fortunately, the European Community is actively encouraging
the institutionalization of software quality by promoting the ISO
9000 family of standards, which describes what is required of a
satisfactory quality system. ISO 9000 is widely recognized in Europe
and is rapidly gaining acceptance in the US and many other parts of
the world. It promises to become the global standard by which the
government, industrial and private consumers can judge the fitness
of suppliers. It can also serve as the blueprint by which suppliers can
achieve the quality level they desire. Happily, ISO 9000 contains
components specifically targeted for software development, and
these are the topic of Software Quality: A Framework for Success in
Software Development and Support.

In this clear, concise and highly-informative text, Joc Sanders and
Eugene Curran provide a ‘nuts-and-bolts’ guide for managers who
might ask the question, ‘'Why bother with ISO 9000 anyway?’
Starting with a bottom-line business rationale, Framework for Success
explains why quality will be a key competitive factor in the coming
years — not just in Europe, but around the world.

They map out the definition of quality in operational terms,
explain the many business benefits it can produce, and lay the
responsibility for achieving it squarely at the feet of top
management. Fortunately for wary managers, Sanders and Curran
don’t stop there. Framework for Success also explains how to
implement a Quality System throughout the company, from
assessing the organization, right through establishing procedures,
support activities, certification and training. Besides explaining how
each of these topics affect software quality, the book provides a
useful summary of ISO 9000 itself, and relates ISO 9000 to essential
quality characteristics and good engineering principles.

It's time for the software industry to come out of the ‘middle
ages’ and establish industrial-strength processes every bit as robust,
reliable and economical as those now in use in manufacturing and
service sectors. Software Quality: A Framework for Success in Software
Development and Support is an excellent place to start understanding
how you can employ ISO 9000 to reach your quality goals, and to
achieve certification under an international standard at the same
time.

Gene Forte
Executive Editor
CASE OUTLOOK



Preface

Why this book is the way it is

This book does not pretend to be a comprehensive, academic text,
telling you all that you could ever want to know about software
quality, and more. If it did, it would be much bigger, and you would
probably find it difficult to sift the important grain from the detailed
chaff! Instead, we have written a guidebook with the clear objective of
meeting the practical needs of busy software engineers and their
managers, working in real-world businesses. We believe these needs
are for a concise, readable book, with separate parts addressed to
two audiences:

Part 1 is a Manager’s Guide to Implementing a Quality System.
It gives high-level guidance on why and how to implement a Quality
System in a software organization. It also explains how to seek
certification for it, and gives up-to-date information about the ISO
9000 international standards for quality systems and alternatives to
them. It is for managers who are planning or initiating a software
quality programme, but it will also be of interest to practising
software engineers wanting an introduction to software quality
management.

Part 2 is a Software Engineer’s Guide to Best Practice. It presents
a guide to current best practice, drawn from a variety of current
international standards on software engineering, and also addresses
software support services. It can be used as a checklist during a
software quality programme, both to assess actual practice and to
define the objectives of proposed new practices.

We have considered the needs of large, medium and small
organizations, without compromising the requirements of the
international quality standards applicable to software, namely ISO
9001, ISO 9000-3, and ISO 9004-2. And we believe the guidance we
have given is relevant to all types of software organizations, from
commercial software houses, to management information systems
departments in user companies, to the developers of real-time and
embedded systems.
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We hope that many companies will be able to use our book as a
basis from which to develop their own quality system by themselves.
Others may need expert advice and assistance as well. Our book may
not contain all the answers you need, but it will set you off in the
right direction.

The underlying philosophy

We have found it useful when starting to read a book, or when
deciding whether to buy it, to have some idea of the authors’
underlying approach and philosophy. It helps the reader to evaluate
what is likely to be relevant to him or her. So we feel it is proper for
us to declare some of the propositions and beliefs which we have
arrived at over the years, as working software managers and
engineers ourselves. We summarize them as follows:

* Quality is the key to success in the software business, as it is in
every other.

* The cheapest way to improve software productivity is to improve

software quality.

The quality of software support is as important as the quality of

the software product: the support environment must be engineered

as carefully as the software itself.

To achieve software quality, people and culture are as important as

technology - if not more so.

The only way to improve software quality reliably is to improve

the software process (which includes personnel, facilities,

equipment, technology and methodology).

® Process improvement is wusually unsuccessful unless top
management demonstrate genuine commitment and leadership.

* Quality and process improvement are an unrelenting endeavour: it
is always possible to do it a little better, a little faster, a little
cheaper.

¢ An ISO 9000-compliant quality system is a good early target for
many software organizations, but not for all.

* A software organization’s quality system must be tailored to its
specific needs and circumstances or it will not be both effective
and efficient.

e An effective software quality system uses good software
engineering practices, based on the following principles:

Quality principles
— Try to prevent defects from being introduced in the first place
— Ensure defects that get in are detected and corrected as early as
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possible

— Establish and eliminate the causes as well as the symptoms of
defects

- Independently audit work for compliance with standards and
procedures

Management principles

— Define roles and responsibilities

— Plan the work

- Track progress against the plans and take corrective action where
necessary

— Progressively refine the plans

Engineering principles

- Analyze the problem before developing the solution

- Break complex problems into several less complex ones

- Ensure the subproblems knit together by controlling their
relationships.
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Part1

Manager’s Guide to
Implementing a Quality
System

Part 1 of this book gives guidance for managers of software
organizations on why and how to implement a quality system, and
how to seek certification for it.

Chapter 1 defines what we mean by software quality, and what a
quality system is. Chapter 2 deals with the human and cultural
issues which are so vital for success. Chapter 3 explains how to
implement a quality system, using a straight-forward five-step model.
Chapter 4 discusses how to demonstrate the effectiveness of the
quality system either by obtaining ISO 9000 certification, or using
other sources.






1

Defining Software Quality

1.1 Why Bother With Quality?

Why bother with quality? Because quality is critical for survival and
success. The market for software is increasingly a global one, and
your organization will not succeed in that market unless you
produce, and are seen to produce, quality products and services. If
you do not do so, your organization may not even survive. This is
the first message of the chapter. It applies as much to software
development and support as to any other product or service.

The word ‘quality’ means different things to different people. We
give a formal definition later and discuss its implications, but in
essence, quality means satisfying customers. A happy customer will
do repeat business.

There are several reasons why you should be concerned with
quality:

quality is now a competitive issue;

quality is essential for survival;

quality is essential for international marketing;
quality is cost-effective;

quality retains customers and increases profits;

e quality is the hallmark of world-class businesses.

1.1.1 Quality is Now a Competitive Issue

Software used to be a technical business, in which functionality was
the key determinant of success. Today, you can no longer rely on the
functionality of your products to win the day. Your competitors can
match your functionality relatively quickly and easily. The only way
to differentiate your product from those of your competitors, beyond
the short term, is by its quality, and the quality of support that goes
with it.

As the software market matures, customers want to be assured of
quality. They no longer accept your claims at face value, but expect
you to demonstrate quality. Certification to international quality

3



4 Software Quality

standards is becoming a prerequisite for getting business; not to have
certification will become a competitive disadvantage.

This applies to in-house information systems departments as well
as to commercial software organizations. Internal customers also
want quality assurance, and question increasingly whether work
should be carried out in-house or outsourced by external suppliers.

1.1.2 Quality is Essential for Survival

Customers are demanding demonstrable quality. If you cannot
deliver it, your ability to survive in a highly competitive and rapidly
changing market is in doubt. More and more large organizations are
deciding to reduce the number of suppliers they use, often by as
much as 90%. In the drive to improve their own quality, they want to
work closely with their chosen suppliers, whom they treat as business
partners. They often use quality certification as a way of selecting
suppliers.

1.1.3 Quality is Essential for International Marketing

The market for software is rapidly becoming global. The ability to
demonstrate quality gives even a small company credibility to enter
an export market.

The Single European Market came into being on 1 January 1993,
and the European Economic Area Agreement (EEA) became effective
in early 1993. The EEA countries (the European Community and
seven EFTA states — Austria, Finland, Iceland, Liechtenstein, Norway,
Sweden and Switzerland) represent the world’s largest trading bloc,
accounting for 40% of world trade, 30% of world production and
380m citizens. Government and multinational buyers in Europe are
already using certification to internationally recognized standards as
a criterion for shortlisting suppliers. Similar developments are taking
place in other world regions — for instance the North American Free
Trade Area (NAFTA).

It works both ways — your home market is vulnerable to quality
foreign imports unless you can compete on quality.

1.1.4 Quality is Cost-effective

An effective quality system leads to increased productivity and
permanently reduced costs, because it enables management to reduce
defect correction costs by emphasizing prevention.

Everyone in the software industry knows that the cost of
correcting defects in software late in development can be orders of



