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Preface

Variational methods have turned out to be a very effective analytical tool in
the study of nonlinear problems. The idea behind them is to try to find so-
lutions of a given boundary value problem by looking for critical (stationary)
points of a suitable “energy” functional defined on an appropriate function
space dictated by the data of the problem. Then the boundary value prob-
lem under consideration is the Euler-Lagrange equation satisfied by a critical
point. In many cases of interest, the energy functional is unbounded (from
both above and below; indefinite functional) and so we cannot hope for a
global maximum or minimum. Therefore we must look for local extrema and
for saddle points obtained by minimax arguments.

One useful technique in obtaining critical points is based on deformations
along the paths of steepest descent of the energy functionals. Another ap-
proach can be based on the Ekeland variational principle. The classical criti-
cal point theory was developed in the sixties and seventies for C L_functionals.
The needs of specific applications (such as nonsmooth mechanics, nonsmooth
gradient systems, mathematical economics, etc.) and the impressive progress
in nonsmooth analysis and multivalued analysis led to extensions of the criti-
cal point theory to nondifferentiable functions, in particular locally Lipschitz
and even continuous functions. The resulting theory succeeded in extending
a big part of the smooth (C!) theory.

In this book, we present the existing nonsmooth critical point theories
(Chapter 2) and use them to study nonlinear boundary value problems of ordi-
nary and partial (elliptic) differential equations, which are in variational form.
We also investigate nonlinear boundary value problems (BVPs) in nonvaria-
tional form, using a great variety of methods and techniques which involve
upper-lower solutions, fixed point and degree theories, nonlinear operator the-
ory, nonsmooth analysis, and multivalued analysis (Chapter 3 and Chapter 4).
The necessary mathematical background to understand these methods is de-
veloped in Chapter 1 (see also the Appendix). This way we present a large
part of the methods used today in the study of nonlinear boundary value
problems with nonsmooth and multivalued terms.
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Chapter 1

Mathematical Background

In this chapter, we review the basic mathematical material that we need in
the development of the nonsmooth critical point theories and in the study of
the nonlinear boundary value problems (ordinary and partial) that follow. So
in the first section we outline the basic facts about Sobolev spaces. Sobolev
spaces provide the appropriate functional framework for the analysis of the
ordinary and partial differential equations problems that we consider in this
volume. The subdifferential of a nonsmooth (nondifferentiable) function is a
multivalued map. So the resulting nonsmooth critical point theories and the
corresponding boundary value problems are of multivalued nature, since the
potential function is nonsmooth. Moreover, in our formulation of the problems
we allow the nonlinear perturbation term to be set-valued. Therefore, to
handle such problems we need to know a few basic facts about Set-Valued
Analysis. In Section 1.2 we review from the theory the main items that
will be helpful in what follows. Since one of our goals in this volume is to
present the main facts about the existing nonsmooth critical point theories,
we need the notions and results of Nonsmooth Analysis. In Section 1.3, we
review the main items of Nonsmooth Analysis, which are needed for what
follows. Nonsmooth Analysis is closely related to Set-Valued Analysis and
to the theory of nonlinear operators. Set-Valued Analysis has already been
covered in Section 1.2. So in Section 1.4 we deal with nonlinear operators,
with particular emphasis on operators of monotone type. We also discuss
briefly the Nemytskii (superposition) operator and present various forms of
the Ekeland Variational Principle. Finally in Section 1.5, we present some
basic facts about semilinear and nonlinear elliptic equations. Our starting
point is the derivation of the spectra of the ordinary and partial Laplacian
and p-Laplacian differential operators under Dirichlet and periodic boundary
conditions. We also consider certain weighted eigenvalue problems driven
by a strongly elliptic linear partial differential operator. We establish the
existence of eigenvalues, provide variational characterizations of them (via
the Rayleigh quotient) and examine the corresponding eigenfunctions. This
analysis is based on some regularity results and maximum principles that we
also present.



2 Nonsmooth Critical Point Theory and Nonlinear BV Ps

1.1 Sobolev Spaces

For the reader’s convenience, in this section we present a quick review of the
theory of Sobolev spaces. The results that we present here are standard and
their proofs as well as a more detailed and deeper analysis can be found in
several classical textbooks on the subject such as Adams (1975), Brézis (1983)
and Kufner, John & Fucik (1977).

1.1.1 Basic Definitions and Properties

Let © C RY be a nonempty open set. By 9Q we denote the boundary
of 2, i.e. 00 Y0no =0 \ Q. Also we say that another open set. Q is
strongly included in €2, denoted by Q' cC €, if ' is bounded and Q' C Q.
For a multi-indexr a = (a1,...,ay) € NY, by |a| we denote the length of
the multi-index, defined by

N
df ™
ol = ) o
k=1
and by D®u we denote the weak derivative of u of order ¢, i.e.

Doy ¥ _Lalu
Oz ... 023

By C°(Q2) we denote the space of functions ¥ € C°°(Q) for which their
support, defined by

supp ¢ 4 {zr € Q: ¥(z) # 0},

is a compact set contained in 2. We furnish C2°(§2) with a convergence notion
according to which {¥, },>1 C C°(Q) converges to 0 if and only if there exists
a compact set K C 2, such that

U supp v, € K

n>1

and the sequence {D*9,, },>1 converges uniformly to 0 for all « € N}'. Usually
C° () equipped with this convergence notion is denoted by D(Q2) and is
known as the space of test functions. Recall that C°(f) is dense in
LP(Q) for all p € [1,+00). By D'(2) we denote the space of distributions,
i.e. the space of all linear maps L: D(2) — R, such that L(9,,) — 0 for
all {¥,},~; € D(2), such that ¥,, — 0. For a given distribution L € D’'(£2)
and for all @ € N, we define the distribution D*L by

poL@w) £ (—1llLew) Ve D).
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For every u € Li (), we can introduce the so-called regular distribution
L, by
L) ¥ / wz)(z)dzr V9 € D).
Q
We have L, = L, if and only if u(xz) = v(z) for almost all x € Q. For

given u,v € L () and @ € N we write v = D%u to express the equality

L, = D*L,. So it is equivalent to saying that

/v(a:)19(m)dx = (=1)l /u(m)D"ﬁ(w)dm V9 € D).
0 0

We say that Du € Ll (Q), if we can find v € LL _(Q2), such that D%u = v.

loc loc

We say that D% € LP(Q2) (with 1 < p < +00), if we can find v € LP(2), such
that D®u = v. Note that, if u € Cl*/(Q), then this generalized derivative
coincides with the usual (classical) partial derivative.

DEFINITION 1.1.1 For m € Ny YNU {0} and 1 < p < 400, we define
the Sobolev space

wmr(Q) L {ue LP(Q): D*u € LP(Q) for all & € NY with |o| < m}.

For every u € W™P(Q), we define

3 =

df ‘ .
lullwmoy = | D ID*ull? it 1= p & -tos,

lal<m

where ||-||,, is the norm of LP(%2), and

af a
lullpme @y = D 1Dl

lal<m

where ||-|| ., is the norm of L>°(2). We also set

wr(@) £ iy e,

REMARK 1.1.1 The space (W™P(Q), ||-||Wm,,,(9)) is a Banach space,

which is reflexive and uniformly convex if p € (1,400) and separa-
ble if p € [1,400). (ng’p(Q),]’~||Wm,,,(Q)) is a closed subspace of
(Wm™P(Q), H'”Wmm(n) ) If p = 2, we write

H @) Lwm2(Q) and HMQ) Lw2(Q).
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These spaces are Hilbert spaces with inner product given by

dj « « « [e3
(U, 0) g (@) & (D*u, D), = Z D%u(z)D%v(x)dz.

jal<m lal<m g
I

The next theorem is known as the Meyers-Serrin Theorem and it says that
Sobolev functions can be approximated by smooth ones.

THEOREM 1.1.1 (Meyers-Serrin Theorem)
If QCRYN is open, m € Ny and p € [1,+00),
then C(Q) N W™P(Q) is dense in W™P(Q).

REMARK 1.1.2 Note that in Theorem 1.1.1 we do not claim that the
approximating sequence of smooth functions belongs in C'*® (Q) To be able to
approximate Sobolev functions by functions which are smooth all the way up

to the boundary, we need to strengthen our hypotheses about the geometry
of Q.

DEFINITION 1.1.2  We say that the boundary 0 of an open set Q C RN
is Lipschitz, if for each x = (z1,...,zN5) € OQ, there exist r > 0 and a
Lipschitz continuous map v: RVN=1 — R which, after rotation and relabelling
of the coordinate azes if necessary, satisfies

QOC1(‘T) = {(ylaayN)eRN ’Y(ylv'“)nyl)<yN}mCT('r)7

where

C(z) L {(i,...,yn) €RY: |z —y| <rfor ke {l,...,N}}.

REMARK 1.1.3  So 09 is Lipschitz, if locally it is the graph of a Lipschitz
continuous function. By Rademacher’s theorem (see Theorem A.2.4), the
outer unit normal n(z) to Q exists for almost all 2 € 99 (on 9N we consider
the (IV — 1)-dimensional Hausdorff (surface) measure; see Definition A.2.3). []

Using this notion we can have a stronger approximation result by smooth
functions.

THEOREM 1.1.2
If QcC RY is a bounded open set with Lipschitz boundary 0Q and u €
WHP(Q) with p € [1, +00),
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then we can find a sequence {un}tns1 SWHP(Q)NC>(Q), such that u, — u
in WHr(Q).

The next theorem (known as the Trace Theorem), for every u € W™P ()
assigns a meaning to expressions like u|sq and a" (the normal derivative on
09)). Because in general the N-dimensional Lebesgue measure of 0F) is zero,
it is not meaningful to talk a priori of u|sn when u € W1 P(Q2), unless u is
at least continuous. So we have to generalize the meaning of boundary values
for Sobolev functions.

THEOREM 1.1.3 (Trace Theorem)
If QC RY is a bounded open set with Lipschitz boundary and p € [1,+00),
then there exists a unique continuous linear operator

Yo: WIP(Q) —s LP(9Q),

such that yo(u) = ulsq for all u € C (Q). We say that vo(u) is the trace of
u € WHP(Q) on 09.

REMARK 1.1.4 For a bounded open set 2 C RN with Lipschitz bound-
ary, we have
keryo = WyP(Q).

The range of vy is less than LP(99). There are functions v € L?(09) which
are not the trace of an element v € W?(Q). More precisely

Y (WP(Q)) = Wi=P(6Q),

where v € Wl_%’p(aQ) if and only if v € LP(8Q) and HU“Wh%,p(aQ) =
with
1
|v(z) — v(@’)| /
P
ol o L / pdo@) + [ EO LD oo

XN

[

Clearly a function u € W P(Q2) can be extended by zero to a Sobolev
function on all RY. Can we do this for any Sobolev function u € WP(Q)?

THEOREM 1.1.4 (Extension Theorem)
If QC RY is a bounded open set and O5) is Lipschitz,
then there exists a bounded linear operator

E: WhP(Q) — WP (RY),



